期刊文献+
共找到694,005篇文章
< 1 2 250 >
每页显示 20 50 100
Structural physical simulation experiment on vertical growth process of strike-slip faults in ultra-deep strata of Tarim Basin,NW China
1
作者 NENG Yuan XIE Zhou +5 位作者 SHAO Longfei RUAN Qiqi KANG Pengfei ZHANG Jianan TIAN Zhiwen LIU Genji 《Petroleum Exploration and Development》 2025年第5期1179-1192,共14页
In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates t... In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential. 展开更多
关键词 strike-slip fault vertical growth evolution process structural physical simulation experiment Ordovician fractured-cavity carbonate reservoir ultra-deep Tarim Basin Fuman oilfield
在线阅读 下载PDF
Porosity prediction based on improved structural modeling deep learning method guided by petrophysical information
2
作者 Bo-Cheng Tao Huai-Lai Zhou +3 位作者 Wen-Yue Wu Gan Zhang Bing Liu Xing-Ye Liu 《Petroleum Science》 2025年第6期2325-2338,共14页
Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for ... Porosity is an important attribute for evaluating the petrophysical properties of reservoirs, and has guiding significance for the exploration and development of oil and gas. The seismic inversion is a key method for comprehensively obtaining the porosity. Deep learning methods provide an intelligent approach to suppress the ambiguity of the conventional inversion method. However, under the trace-bytrace inversion strategy, there is a lack of constraints from geological structural information, resulting in poor lateral continuity of prediction results. In addition, the heterogeneity and the sedimentary variability of subsurface media also lead to uncertainty in intelligent prediction. To achieve fine prediction of porosity, we consider the lateral continuity and variability and propose an improved structural modeling deep learning porosity prediction method. First, we combine well data, waveform attributes, and structural information as constraints to model geophysical parameters, constructing a high-quality training dataset with sedimentary facies-controlled significance. Subsequently, we introduce a gated axial attention mechanism to enhance the features of dataset and design a bidirectional closed-loop network system constrained by inversion and forward processes. The constraint coefficient is adaptively adjusted by the petrophysical information contained between the porosity and impedance in the study area. We demonstrate the effectiveness of the adaptive coefficient through numerical experiments.Finally, we compare the performance differences between the proposed method and conventional deep learning methods using data from two study areas. The proposed method achieves better consistency with the logging porosity, demonstrating the superiority of the proposed method. 展开更多
关键词 Porosity prediction Deep learning Improved structural modeling Petrophysical information
原文传递
First-principles study of physical properties of L1_(2)-Al_(3)Xstructural phases for heat-resistant aluminum conductors
3
作者 Yao-jie KONG Hong-ying LI +1 位作者 Hui-jin TAO Wen-jian LIU 《Transactions of Nonferrous Metals Society of China》 2025年第2期377-391,共15页
The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstr... The mechanical,thermodynamic properties and electrical conductivities of L1_(2)-Al_(3)X(X=Zr,Sc,Er,Yb,Hf)structural phases in aluminum conductors were investigated through a first-principles study.The results demonstrate that all structural phases have good alloy-forming ability and structural stability,where Al_(3)Zr is the most superior.Al_(3)Zr,Al_(3)Hf and Al_(3)Sc have enhanced shear and deformation resistance in comparison to other phases.Within the temperature range of 200−600 K,Al_(3)Er and Al_(3)Yb possess the greatest thermodynamic stability,followed by Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.Al_(3)Er and Al_(3)Yb have higher thermodynamic stability than Al_(3)Hf,Al_(3)Zr and Al_(3)Sc.All structural phases exhibit substantial metallic properties,indicating their good electrical conductivity.The electrical conductivities of Al_(3)Hf and Al_(3)Zr are higher than those of Al_(3)Er,Al_(3)Yb and Al_(3)Sc.The covalent bond properties in Al_(3)Sc,Al_(3)Er and Al_(3)Yb enhance the hardness,brittleness and thermodynamic stability of the structural phase.The thermodynamic stability of Al_(3)Sc is significantly reduced by ionic bonds. 展开更多
关键词 aluminum conductor L1_(2)-Al_(3)X structural phase FIRST-PRINCIPLES mechanical properties thermodynamic properties electrical conductivity valence bonds
在线阅读 下载PDF
Structure-type rockburst in deep tunnels: Physical modeling and numerical simulation
4
作者 Guo-Qiang Zhu Yan Zhang +3 位作者 Shaojun Li Yang-Yi Zhou Jialiang Zhou Minglang Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3502-3523,共22页
Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that ... Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters. 展开更多
关键词 Deep tunnel ROCKBURST structural plane Strain heterogeneity physical model test Particle flow code(PFC)
在线阅读 下载PDF
Understanding the local structure and thermophysical behavior of Mg-La liquid alloys via machine learning potential
5
作者 Jia Zhao Taixi Feng Guimin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期439-449,共11页
The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La a... The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies. 展开更多
关键词 magnesium-lanthanum liquid alloys local structure macroscopic properties thermodynamic behavior deep potential mo-lecular dynamic simulation
在线阅读 下载PDF
Social insects behind the microgranular structure of Ferralsols: Consequences for their physical fertility when cultivated
6
作者 Ary BRUAND 《Pedosphere》 2025年第1期17-19,共3页
It was long accepted that the microgranular structure of many Ferralsols was mainly related to physicochemical processes and to their mineralogical composition. It now appears, however, that this microgranular structu... It was long accepted that the microgranular structure of many Ferralsols was mainly related to physicochemical processes and to their mineralogical composition. It now appears, however, that this microgranular structure originates from the burrowing activity of termites and ants. Given its importance for the physical properties of Ferralsols, it will be necessary to study the different termite and ant species responsible for this microgranular structure and the characteristics of the burrowing activity associated with species. 展开更多
关键词 SPECIES structure composition
原文传递
Physical and numerical modeling of a framed anti-sliding structure for a mountainous railway line
7
作者 QIU Ruizhe LIU Kaiwen +3 位作者 YANG Zhixiang MA Chiyuan XIAO Jian SU Qian 《Journal of Southeast University(English Edition)》 2025年第1期12-19,共8页
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force... To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance. 展开更多
关键词 mountainous railway SLOPE framed anti-sliding structure model test finite element modeling mechanical responses
在线阅读 下载PDF
Genetic Analysis of Structural Styles in the Makran Accretionary Wedge–Insight from Physical Simulations
8
作者 SHAO Longfei YU Fusheng +6 位作者 GONG Jianming LIAO Jing YU Zhifeng TANG Liang CHEN Jiangong WANG Yuefeng NENG Yuan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期157-172,共16页
The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo... The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution. 展开更多
关键词 Makran accretionary wedge structural styles faults distribution physical simulation
在线阅读 下载PDF
Correlation between structural phase transition and physical properties of Co^(2+)/Gd^(3+)co-substituted copper ferrite 被引量:1
9
作者 Mohsen Choupani Ahmad Gholizadeh 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第7期1344-1353,I0006,共11页
The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-... The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-xCoxFe2-xGdxO4 prepared by the citrate-nitrate auto-combustion synthesis was investigated.Characterization of the samples was performed with powder X-ray diffraction(XRD),Raman and Fouriertransform infrared(FTIR)spectroscopy,field-emission scanning electron microscopy,X-ray energydispersive spectroscopy,UV-Vis spectroscopy,and a vibrating sample magnetometer.The results of XRD,Raman,and FTIR analysis show a gradual structural phase transition from a tetragonal(I41/amd)structure to a cubic(Fd3m)structure.The bandgap energy of the studied samples is in a range of 1.57-1.75 eV with a minimum in sample x=0.06 and then increases.Magnetic investigations show that the presence of Co^(2+)/Gd^(3+)cations in an octahedral site of the copper ferrite structure could increase saturation magnetization and coercive field from 567.9 Oe and 23.62 emu/g to 929.4 Oe and 28.27 emu/g,respectively. 展开更多
关键词 Spinel copper ferrite Citrate-nitrate method structure phase transition Microstructure properties Magnetic properties Rare earths
原文传递
Status and Development of Rapid Detection Technology for Tunnel Structural Defects 被引量:3
10
作者 LIU Xuezeng FANG Maoliu +3 位作者 WU Dexing LI Yinping LIU Xingen LI Gang 《隧道建设(中英文)》 北大核心 2025年第4期657-676,I0005-I0024,共40页
Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an... Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection. 展开更多
关键词 TUNNEL structural defect inspection techniques inspection equipment rapid inspection
在线阅读 下载PDF
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
11
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
The wearable landscape: Issues pertaining to the validation of the measurement of 24-h physical activity, sedentary, and sleep behavior assessment 被引量:2
12
作者 Marco Giurgiu Birte von Haaren-Mack +16 位作者 Janis Fiedler Simon Woll Alexander Burchartz Simon Kolb Sascha Ketelhut Claudia Kubica Carina Nigg Irina Timm Maximiliane Thron Steffen Schmidt Kathrin Wunsch Gerhard Muller Claudio RNigg Alexander Woll Markus Reichert Ulrich Ebner-Priemer Johannes BJ Bussmann 《Journal of Sport and Health Science》 2025年第3期131-139,共9页
The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activit... The ongoing revolution in information technology is reshaping human life. In the realm of health behavior, wearable technology emerges as a leading digital solution,capturing physical behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of daily life. Wearables are applied in research, clinical practice, and as lifestyle devices;most obvious, they promise to be a key element for increasing human physical activity, one of the biggest health challenges nowadays. 展开更多
关键词 increasing human physical activityone lifestyle devicesmost validation studies health behaviorwearable technology revolution information technology wearable technology physical activity physical behaviors iephysical
暂未订购
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
13
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
14
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 structural color Microlens array Dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
15
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Delaying liver aging:Analysis of structural and functional alterations 被引量:1
16
作者 Yu-Qin Yao Qiong-Yue Cao Zheng Li 《World Journal of Gastroenterology》 2025年第15期1-7,共7页
This article is based on a recent bibliometric analysis of research progress on liver aging.The liver is notable for its extraordinary ability to rejuvenate,thereby safeguarding and maintaining the organism’s integri... This article is based on a recent bibliometric analysis of research progress on liver aging.The liver is notable for its extraordinary ability to rejuvenate,thereby safeguarding and maintaining the organism’s integrity.With advancing age,there is a noteworthy reduction in both the liver’s size and blood circulation.Furthermore,the wide range of physiological alterations driven on by aging may foster the development of illnesses.Previous studies indicate that liver aging is linked to impaired lipid metabolism and abnormal gene expression associated with chronic inflammation.Factors such as mitochondrial dysfunction and telomere shortening accumulate,which may result in increased hepatic steatosis,which impacts liver regeneration,metabolism,and other functions.Knowing the structural and functional changes could help elderly adults delay liver aging.Increasing public awareness of anti-aging interventions is essential.Besides the use of dietary supplements,alterations in lifestyle,including changes in dietary habits and physical exercise routines,are the most efficacious means to decelerate the aging process of the liver.This article highlights recent advances in the mechanism research of liver aging and summarizes the promising intervention options to delay liver aging for preventing related diseases. 展开更多
关键词 Liver aging TELOMERE HEPATOCYTES Caloric restriction physical exercise REGENERATION
暂未订购
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:4
17
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 Microwave absorbing materials Metacomposites Equivalent electromagnetic parameters structural parameters Wide temperature spectrum
原文传递
Physical therapy management of ischiofemoral impingement syndrome:A case report 被引量:1
18
作者 Faisal Adnan Mohammed Abdulmajeed Nasser Alotaibi +2 位作者 Mousa Ahmed Hamdi Noorah Abdullah Alshoweir Ali Mufraih Albarrati 《World Journal of Clinical Cases》 2025年第20期102-108,共7页
BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding s... BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding structured,multimodal rehabilitation programs targeting biomechanical deficits in IFI.This case report evaluates the efficacy of a multimodal rehabilitation program addressing a critical gap in conservative management strategies.CASE SUMMARY The patient underwent comprehensive physical and clinical examination,including hip X-ray and magnetic resonance imaging investigations.The patient completed the Musculoskeletal Health Questionnaire(MSK-HQ)and numerical pain rating scale(NPRS).The patient underwent a two-month tailored structured physical therapy intervention and repeated the same assessment afterwards.The patient's substantial reduction in pain,reflected by a significant decrease in the patient’s NPRS score from 9 to 3 points,signifies a positive clinical response.This outcome,coupled with the significant improvement in the patient's health-related quality of life according to the MSK-HQ score,which increased from 12 to 48 points,underscores the success of our research.CONCLUSION The study highlights the importance of a comprehensive approach to diagnosing and managing IFI,combining clinical assessment with imaging and implementing a multimodal rehabilitation program for optimal outcomes. 展开更多
关键词 Ischiofemoral impingement Musculoskeletal health questionnaire PAIN physical therapy Case report
暂未订购
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
19
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY structural MECHANISMS
在线阅读 下载PDF
Development of physical model test system for fault-slip induced rockburst in underground coal mining 被引量:1
20
作者 Bei Jiang Kunbo Wu +4 位作者 Qi Wang Hongpu Kang Bowen Zhang Zhaosen Zhang Chen Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2227-2238,共12页
A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during ... A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings. 展开更多
关键词 Fault slip ROCKBURST physical model Boundary energy compensation Deformation and failure characteristics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部