Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs...Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP.展开更多
Plasma immersion ion implantation(PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases(SF_6/O_2). The micro/nano structures on the surfaces of the sampl...Plasma immersion ion implantation(PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases(SF_6/O_2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy(SEM) and atomic force microscopy(AFM). The results showed that with increasing ratio of mixed gases(SF_6/O_2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases(SF_6/O_2), which is in accordance with the change of the height of micro/nano structures.展开更多
Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observe...Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalyti...Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalytic reaction efficiency and selectivity[1–3].This technique has achieved significant progress in areas such as electrocatalysis,catalytic cracking,and energy conversion,especially in reactions like hydrogen generation,oxygen reduction,nitrogen reduction,and carbon dioxide reduction[4–6].Intercalation catalysis can enhance catalyst activity and selectivity,but challenges remain regarding stability,reusability,and industrial application.Future research will focus on developing new intercalation materials,optimizing catalyst design,and exploring their potential applications in complex environments[7].展开更多
Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.H...Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems.展开更多
The efficient and stable operation of proton exchange membrane fuel cells(PEMFCs)in practical applications can be adversely affected by various contaminants.This study delves into the impact of Cr_(2)(SO_(4))_(3)conta...The efficient and stable operation of proton exchange membrane fuel cells(PEMFCs)in practical applications can be adversely affected by various contaminants.This study delves into the impact of Cr_(2)(SO_(4))_(3)contamination on the gas diffusion layer(GDL)and PEMFC performance,systematically analyzing the physicochemical property changes and their correlation with electrochemical performance.The results indicate that after post-treatment,the GDL surface exhibited exposed carbon fibers,cracks,and large pores in the microporous layer(MPL),with a noticeable detachment of PTFE.There was a marked reduction in C and F element signals,an increase in O element signals,deposition of Cr_(2)(SO_(4))_(3),formation of C=O and C=C bonds,appearance of Cr_(2)(SO_(4))_(3)characteristic peaks,and changes in pore structure—all suggesting significant alterations in the GDL's surface morphology,structure,and chemical composition.The decline in mechanical strength and thermal stability,and increased surface roughness and resistance negatively impacted fuel cell performance.At high current densities,the emergence of water flooding increased mass transfer resistance from 0.1Ωcm^(2)to 1.968Ωcm^(2),with a maximum power density decay rate reaching 71.17%.This study reveals the significant negative impact of Cr_(2)(SO_(4))_(3)contamination on GDL and fuel cell performance,highlighting that changes in surface structure,reduced hydrophobicity,and increased mass transfer resistance are primary causes of performance degradation.The findings provide crucial insights for improving GDL materials,optimizing fuel cell manufacturing and operation processes,and addressing contamination issues in practical applications.展开更多
The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope...The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope and optical microscope. The re- sults showed that with the leaves changing from lanceolate shape to dentate broad-ovate shape, their structure obviously tended to be xeromorph: developed palisade tissue, undeveloped spongy tissue, thick cutin layer and sunken stomas. The amount of mitochondria tended to be increased, and the shape of chloroplasts varied from regular spindle to irregular rotundity or oval. The leaves were cov- ered with wax without cilium, and the stomas on the upper and lower epidermis of the leaves opened unevenly. The stomas on the lower epidermis were deeper than those on the upper epidermis under the scanning electron microscope. The results implied that the structural characteristics of the diversiform-leaves of P. euphratica are related to its eco-adaptability.展开更多
In this study,we numerically investigate the droplet impact onto a thin liquid film deposited on a structured surface with square pillars and cavities.The time evolution of crown geometry is strongly affected by the s...In this study,we numerically investigate the droplet impact onto a thin liquid film deposited on a structured surface with square pillars and cavities.The time evolution of crown geometry is strongly affected by the surface structure.When the thickness of the liquid film is larger than the structure height,the expanding speed of the crown base radius is independent of the structure width.However,if the liquid film thickness is equal to the structure height,the crown base expands slower as the structure width increases.Surface structures have strong effects on the crown height and radius,and can prevent ejected filament from breaking into satellite droplets for certain cases.For the liquid film with the thickness equal to the pillar height,both the crown height and the radius exhibit non-monotonic behaviors as the pillar width increases.There exists one pillar width which produces the smallest crown height and the largest crown radius.展开更多
Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface s...Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers.展开更多
Classical theory of heterogeneous nucleation has been developed with an implied hypothesis of smooth substrate surfaces; however, morphologies of any real substrate surfaces are generally complicated and demonstrate f...Classical theory of heterogeneous nucleation has been developed with an implied hypothesis of smooth substrate surfaces; however, morphologies of any real substrate surfaces are generally complicated and demonstrate fractal characteristics. In this paper, the wettability between the embryo and the fractal substrate surface was discussed, and heterogeneous nucleation behaviors were theoretically analyzed. The result shows that the roughness factor of a fractal surface varies with the scale of the embryo. As a result, the fractal character of the substrate surface has important effects on heterogeneous nucleation behaviors. It has been shown that the energy barrier for heterogeneous nucleation of a non-wetting phase on a fractal rough surface increases with increasing fractal dimensions, and both the critical nucleus radius and the nucleation energy barrier decrease with increasing fractal dimensions for heterogeneous nucleation of a wetting phase on the fractal rough surface. For a non-wetting system, the critical nucleus radius shows a slight shift with changes of the intrinsic wetting angle, but for a wetting system, the critical nucleus radius shows an obvious change with decreasing intrinsic wetting angle, thus imposes a stronger effect on the heterogeneous nucleation behaviors.展开更多
Molecular structures of adsorbed waters at metal surfaces are essential to understanding the widespread processes ranging from ice nucleation,to water involved catalytic surface reactions,to many phenomena of biologic...Molecular structures of adsorbed waters at metal surfaces are essential to understanding the widespread processes ranging from ice nucleation,to water involved catalytic surface reactions,to many phenomena of biological and astrochemical importance.Instead of providing a comprehensive literature survey,we focus in this review on detailed structural information,such as water orientations and occupation sites,of intact waters at low temperatures and ultrahigh vacuum conditions investigated by various surface techniques.Despite progresses made in direct imaging the surface waters at high resolutions,as exemplified in a close-packed(e.g.Pd(111)) and an open metal surfaces(e.g.Cu(110)) supported waters,structural mysteries remain at diverse metal surfaces.We highlight experimental challenges and discuss structural mysteries in elucidating surface water structures at molecular levels.展开更多
The Mg-air batteries face limitations with pronounced hydrogen evolution and low anodic utilization efficiency from Mg anodes in conventional NaCl electrolytes.The corrosion performance,surface composition,and dischar...The Mg-air batteries face limitations with pronounced hydrogen evolution and low anodic utilization efficiency from Mg anodes in conventional NaCl electrolytes.The corrosion performance,surface composition,and discharge properties of commercial purity Mg anodes were thoroughly investigated in KNO_(3)electrolytes with and without sodium 5-sulfosalicylate and compared to NaCl electrolyte.The addition of sodium 5-sulfosalicylate to KNO_(3)-based electrolyte results in efficient inhibition of H_(2)evolution,consequently enhancing anodic utilization efficiency to 84%and specific capacity to 1844 mAh/g,compared to NaCl(24%and 534 mAh/g,respectively)under discharge condition of 10 mA/cm^(2)in half cell.Furthermore,the chelating ability of sodium 5-sulfosalicylate can significantly improve the Mg surface dissolution kinetics and discharge product deposition rate at the Mg anode/electrolyte interface,yielding formation of a thinner discharge layer as confirmed by time-of-flight secondary ion mass spectrometry.The discharge voltage is increased to 1.60 V,compared to 1.35 V in KNO_(3)at 0.5 mA/cm^(2)in full cell.However,higher concentration of sodium 5-sulfosalicylate can accelerate Mg anode dissolution,impeding the improvement of anodic utilization efficiency,specific capacity,and energy density.Hence,determining optimal additive concentration and current density is crucial for enhancing the discharge properties of Mg-air batteries and mitigating excessive Mg dissolution in chloride-free electrolytes.展开更多
Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generati...Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-reso...The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.展开更多
Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon ...Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties.展开更多
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic...The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.展开更多
Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply period...Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
基金National Natural Science Foundation of China(No.52173264).
文摘Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP.
基金financially supported by NSFC Project(Grant No.51376022)
文摘Plasma immersion ion implantation(PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases(SF_6/O_2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy(SEM) and atomic force microscopy(AFM). The results showed that with increasing ratio of mixed gases(SF_6/O_2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases(SF_6/O_2), which is in accordance with the change of the height of micro/nano structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90406022, 10674159 and 60771037)the National Basic Research Program of China (Grant No 2006CB921305)
文摘Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
文摘Intercalation catalysis research involves inserting metal ions,molecules,or ionic liquids into the layered structure of catalysts to adjust their electronic structure and surface properties,thereby optimizing catalytic reaction efficiency and selectivity[1–3].This technique has achieved significant progress in areas such as electrocatalysis,catalytic cracking,and energy conversion,especially in reactions like hydrogen generation,oxygen reduction,nitrogen reduction,and carbon dioxide reduction[4–6].Intercalation catalysis can enhance catalyst activity and selectivity,but challenges remain regarding stability,reusability,and industrial application.Future research will focus on developing new intercalation materials,optimizing catalyst design,and exploring their potential applications in complex environments[7].
基金supported by the National Natural Science Foundation of China(Nos.52102291,52271011,and 51701142)supported by a grant from the Cangzhou Institute of Tiangong University(No.TGCYY-F-0201)。
文摘Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems.
基金funded by Key Laboratory of Energy Conversion and Storage Technology(Southern University of Science and Technology)Ministry of Education+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(grant No.2016ZT06N500)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(grant No.2018B030322001).
文摘The efficient and stable operation of proton exchange membrane fuel cells(PEMFCs)in practical applications can be adversely affected by various contaminants.This study delves into the impact of Cr_(2)(SO_(4))_(3)contamination on the gas diffusion layer(GDL)and PEMFC performance,systematically analyzing the physicochemical property changes and their correlation with electrochemical performance.The results indicate that after post-treatment,the GDL surface exhibited exposed carbon fibers,cracks,and large pores in the microporous layer(MPL),with a noticeable detachment of PTFE.There was a marked reduction in C and F element signals,an increase in O element signals,deposition of Cr_(2)(SO_(4))_(3),formation of C=O and C=C bonds,appearance of Cr_(2)(SO_(4))_(3)characteristic peaks,and changes in pore structure—all suggesting significant alterations in the GDL's surface morphology,structure,and chemical composition.The decline in mechanical strength and thermal stability,and increased surface roughness and resistance negatively impacted fuel cell performance.At high current densities,the emergence of water flooding increased mass transfer resistance from 0.1Ωcm^(2)to 1.968Ωcm^(2),with a maximum power density decay rate reaching 71.17%.This study reveals the significant negative impact of Cr_(2)(SO_(4))_(3)contamination on GDL and fuel cell performance,highlighting that changes in surface structure,reduced hydrophobicity,and increased mass transfer resistance are primary causes of performance degradation.The findings provide crucial insights for improving GDL materials,optimizing fuel cell manufacturing and operation processes,and addressing contamination issues in practical applications.
文摘The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope and optical microscope. The re- sults showed that with the leaves changing from lanceolate shape to dentate broad-ovate shape, their structure obviously tended to be xeromorph: developed palisade tissue, undeveloped spongy tissue, thick cutin layer and sunken stomas. The amount of mitochondria tended to be increased, and the shape of chloroplasts varied from regular spindle to irregular rotundity or oval. The leaves were cov- ered with wax without cilium, and the stomas on the upper and lower epidermis of the leaves opened unevenly. The stomas on the lower epidermis were deeper than those on the upper epidermis under the scanning electron microscope. The results implied that the structural characteristics of the diversiform-leaves of P. euphratica are related to its eco-adaptability.
基金Project supported by the National Natural Science Foundation of China(Nos.11988102,91848201,11872004,and 11802004)
文摘In this study,we numerically investigate the droplet impact onto a thin liquid film deposited on a structured surface with square pillars and cavities.The time evolution of crown geometry is strongly affected by the surface structure.When the thickness of the liquid film is larger than the structure height,the expanding speed of the crown base radius is independent of the structure width.However,if the liquid film thickness is equal to the structure height,the crown base expands slower as the structure width increases.Surface structures have strong effects on the crown height and radius,and can prevent ejected filament from breaking into satellite droplets for certain cases.For the liquid film with the thickness equal to the pillar height,both the crown height and the radius exhibit non-monotonic behaviors as the pillar width increases.There exists one pillar width which produces the smallest crown height and the largest crown radius.
基金supported by the National Basic Research Program of China (No. 2011CB605602)
文摘Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers.
基金supported by the National Basic Research Program ("973" Program) of China (No.2011CB610402)the National Natural Science Foundation of China (Nos. 50901061 and 50971102)+1 种基金the fund of the State Key Laboratory of Solidification Processing in NWPU, China (Nos. 02-TZ-2008 and 36-TP-2009)the Programme of Introducing Talents of Discipline to Universities (No. 08040)
文摘Classical theory of heterogeneous nucleation has been developed with an implied hypothesis of smooth substrate surfaces; however, morphologies of any real substrate surfaces are generally complicated and demonstrate fractal characteristics. In this paper, the wettability between the embryo and the fractal substrate surface was discussed, and heterogeneous nucleation behaviors were theoretically analyzed. The result shows that the roughness factor of a fractal surface varies with the scale of the embryo. As a result, the fractal character of the substrate surface has important effects on heterogeneous nucleation behaviors. It has been shown that the energy barrier for heterogeneous nucleation of a non-wetting phase on a fractal rough surface increases with increasing fractal dimensions, and both the critical nucleus radius and the nucleation energy barrier decrease with increasing fractal dimensions for heterogeneous nucleation of a wetting phase on the fractal rough surface. For a non-wetting system, the critical nucleus radius shows a slight shift with changes of the intrinsic wetting angle, but for a wetting system, the critical nucleus radius shows an obvious change with decreasing intrinsic wetting angle, thus imposes a stronger effect on the heterogeneous nucleation behaviors.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.YYYJ-0912)
文摘Molecular structures of adsorbed waters at metal surfaces are essential to understanding the widespread processes ranging from ice nucleation,to water involved catalytic surface reactions,to many phenomena of biological and astrochemical importance.Instead of providing a comprehensive literature survey,we focus in this review on detailed structural information,such as water orientations and occupation sites,of intact waters at low temperatures and ultrahigh vacuum conditions investigated by various surface techniques.Despite progresses made in direct imaging the surface waters at high resolutions,as exemplified in a close-packed(e.g.Pd(111)) and an open metal surfaces(e.g.Cu(110)) supported waters,structural mysteries remain at diverse metal surfaces.We highlight experimental challenges and discuss structural mysteries in elucidating surface water structures at molecular levels.
基金the China Scholarship Council(CSC)for funding(No.202209350006).
文摘The Mg-air batteries face limitations with pronounced hydrogen evolution and low anodic utilization efficiency from Mg anodes in conventional NaCl electrolytes.The corrosion performance,surface composition,and discharge properties of commercial purity Mg anodes were thoroughly investigated in KNO_(3)electrolytes with and without sodium 5-sulfosalicylate and compared to NaCl electrolyte.The addition of sodium 5-sulfosalicylate to KNO_(3)-based electrolyte results in efficient inhibition of H_(2)evolution,consequently enhancing anodic utilization efficiency to 84%and specific capacity to 1844 mAh/g,compared to NaCl(24%and 534 mAh/g,respectively)under discharge condition of 10 mA/cm^(2)in half cell.Furthermore,the chelating ability of sodium 5-sulfosalicylate can significantly improve the Mg surface dissolution kinetics and discharge product deposition rate at the Mg anode/electrolyte interface,yielding formation of a thinner discharge layer as confirmed by time-of-flight secondary ion mass spectrometry.The discharge voltage is increased to 1.60 V,compared to 1.35 V in KNO_(3)at 0.5 mA/cm^(2)in full cell.However,higher concentration of sodium 5-sulfosalicylate can accelerate Mg anode dissolution,impeding the improvement of anodic utilization efficiency,specific capacity,and energy density.Hence,determining optimal additive concentration and current density is crucial for enhancing the discharge properties of Mg-air batteries and mitigating excessive Mg dissolution in chloride-free electrolytes.
基金supported by the National Natural Science Foundation of China (Nos. 52235006 and 52025053)the National Key Research and Development Program of China (No. 2022YFB4600500)
文摘Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金financially supported by the National Key R&D Program of China(No.2021YFB3704000)the National Natural Science Foundation of China(Nos.52074032,51974029,52071013,and 52130407)+3 种基金the Beijing Natural Science Foundation(No.2232084)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120033)the 111 Project(No.B170003)the Basic and Applied Basic Research Fund of Guangdong Province,China(No.BK20BE015).
文摘The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.
基金supported by the National Natural Science Foundation of China(12205225,52373063,and 51873166)。
文摘Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties.
基金supported by the National Natural Science Foundation of China(22374119,21902128)the China Postdoctoral Science Foundation(2021M692620)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-01)the Key Project of Natural Science Fund of Shaanxi Province(2023-JC-ZD-06)。
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
基金supported by the National Natural Science Foundation of China(No.51974028)the Fundamental Research Funds for the Central Universities(No.2021JCCXJD01)the Key R&D and transformation projects in Qinghai Province(No.2023-HZ-801).
文摘Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.