期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
1
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Structural characteristics,surface properties and methylene blue adsorption application of halloysite nanotubes regulated with controllable treatment processes
2
作者 Xiaoyu Jiang Sikai Zhao +5 位作者 Jiafang Zhang Haiyi Lü Jie Wang Wenbao Liu Baoyu Cui Yanbai Shen 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1331-1344,共14页
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre... To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications. 展开更多
关键词 halloysite nanotubes structure regulation methylene blue adsorption CALCINATION acid treatment alkali treatment
在线阅读 下载PDF
Cation potential guiding structural regulation of lithium halide superionic conductors
3
作者 Yinghui Xia Yixi Lin Zhenming Xu 《Chinese Journal of Structural Chemistry》 2025年第3期12-14,共3页
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat... Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements. 展开更多
关键词 metal elements lithium halide solid state electrolytes structural regulation halogen elements electrolyte material cation potential ionic conductivityhigh lithium halide superionic conductors
原文传递
High magnetic field-induced structural transformation of NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures for enhancing lithium storage performance
4
作者 Jia-qi LIU Rong-yuan ZHANG +5 位作者 Xiao-yang WANG Jun WANG Tie LIU Wei-bin CUI Qiang WANG Shuang YUAN 《Transactions of Nonferrous Metals Society of China》 2025年第3期932-944,共13页
In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare... In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance. 展开更多
关键词 high magnetic field NiFe_(2)O_(4)/Fe_(2)O_(3) HETEROSTRUCTURE structural regulation lithium-ion battery anode
在线阅读 下载PDF
Structural regulation of electrocatalysts for room-temperature sodium-sulfur batteries
5
作者 Liang Wu Xi-Long Dou +3 位作者 Xiao-Yun Wang Zi-Jiang Liu Wei-Han Li Ying Wu 《Rare Metals》 2025年第4期2294-2313,共20页
Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy dens... Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy density.However,the practical application of RT Na-S batteries is hindered by low reversible capacity and unsatisfying long-cycling performance arising from the severe shuttle effect and sluggish S redox kinetics.This review provides an overview of recent efforts for the optimization strategies of the electronic structure of catalysts via catalyst engineering to enhance the adsorption and catalytic activity toward soluble long-chain sodium polysulfides(NaPSs).Finally,the current challenges and prospects for further optimization strategies of catalysts,understanding catalysis and structural evolution mechanism,and achieving practical applications are highlighted to meet the commercial requirements of RT Na-S batteries. 展开更多
关键词 Room-temperature sodium-sulfur batteries Catalyst structural regulation
原文传递
Effects of anions on the structural regulation of Zn‑salen‑modified metal‑organic cage
6
作者 GUO Qiaojia CAI Junkai DUAN Chunying 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2203-2211,共9页
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa... By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-vip electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold. 展开更多
关键词 metal-organic cage Zn-salen host-vip electrostatic interaction ANIONS structural regulation
在线阅读 下载PDF
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
7
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Support electron inductive effect of Pd-Mn/Ni foam catalyst for robust electrocatalytic hydrodechlorination 被引量:1
8
作者 Junxi Li Chao Feng +2 位作者 Chong Chen Yuan Pan Yunqi Liu 《Journal of Environmental Sciences》 2025年第3期288-300,共13页
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe... Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds. 展开更多
关键词 PALLADIUM structural Regulation Electrocatalytic hydrodechlorination Support electron inductive effect
原文传递
Carbon materials for smart batteries
9
作者 ZHOU Jun-yi DU Hong-hui +2 位作者 WANG Xue-tao CAO Xin-ru ZHI Lin-jie 《新型炭材料(中英文)》 北大核心 2025年第4期822-836,共15页
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is... Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated. 展开更多
关键词 Carbon materials Smart battery structural regulation Electrochemical performance Multifunctional integration
在线阅读 下载PDF
Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries
10
作者 Rui Zhou Rui Liu +4 位作者 Yun-Nuo Li Si-Jie Jiang Tian-Tian Jing Yan-Song Xu Fei-Fei Cao 《电化学(中英文)》 北大核心 2025年第8期34-43,共10页
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type... Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C. 展开更多
关键词 Dual-ion battery Biomass hard carbon structural regulation High operating voltage High rate
在线阅读 下载PDF
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
11
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 Pore structure regulation Closed pore Corn cob Hard carbon anode material Sodium-ion batteries
在线阅读 下载PDF
Potential and progress of two-dimensional nanomaterials in oil-based lubrication
12
作者 Changxing Yang Guxia Wang +1 位作者 Shengwei Guo Jianlin Sun 《Chinese Chemical Letters》 2025年第9期46-55,共10页
Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.Ho... Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials. 展开更多
关键词 2D nanomaterials structural regulation Structure-performance relationship Computational simulation Mechanism of action Oil-based lubrication
原文传递
Controllable phase conversion of nickel-based catalysts by sulfur induced electrodeposition for efficient hydrogen evolution
13
作者 Zehao Zang Yangyang Ren +8 位作者 Chunyan Fan Yahui Cheng Shuquan Zhang Lanlan Li Xiaofei Yu Xiaojing Yang Zunming Lu Xinghua Zhang Hui Liu 《Journal of Energy Chemistry》 2025年第4期665-673,共9页
Exploring efficient transition-metal-based electrocatalysts is critical for the wide application of electrochemical hydrogen generation technology.Although the phase displays prominent influence on their performance,i... Exploring efficient transition-metal-based electrocatalysts is critical for the wide application of electrochemical hydrogen generation technology.Although the phase displays prominent influence on their performance,it remains a major challenge to achieve phase regulation in the same synthesis method and elucidate the intrinsic relationship between the phase and activity.Herein,we developed a sulfur induced electrodeposition strategy to achieve the precise phase regulation of nickel-based materials from Ni(OH)_(2)to Ni and Ni_(3)S_(2).S atoms can be introduced into Ni and Ni(OH)_(2)due to sulfur inducement,and the S proportion is finely controlled via changing the deposition parameters.Importantly,the obtained S-Ni catalyst displays enhanced hydrogen evolution activity with an ultralow overpotential of 27 mV at 10 mA cm^(-2),which is superior to the S-Ni(OH)_(2),Ni_(3)S_(2),and even Pt/C.Density functional theory(DFT)calculations disclose the S-Ni catalyst exhibits optimal charge state and local coordination,remarkably optimizing the water adsorption and Ni-H^(*)binding energy.This work provides new insights into phase regulation in electrodeposition and an understanding of the intrinsic relationship between phase and activity. 展开更多
关键词 Phase conversion Hydrogen evolution reaction Nickel-based catalysts Sulfur atoms modulation Local structure regulation
在线阅读 下载PDF
Electrolyte engineering and interphase chemistry toward high-performance nickel-rich cathodes:Progress and perspectives
14
作者 Shangjuan Yang Ke Yang +4 位作者 Jinshuo Mi Shaoke Guo Xufei An Hai Su Yanbing He 《Materials Reports(Energy)》 2025年第1期19-31,共13页
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f... Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes. 展开更多
关键词 Ni-rich cathodes Solvation structure regulation Electrolyte additives Cathode-electrolyte interphase High charging cut-off voltage
在线阅读 下载PDF
Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production
15
作者 Hongyang Li Yue Liu +6 位作者 Xiuwen Wang Haijing Yan Guimin Wang Dongxu Wang Yilong Wang Shuo Yang Yanqing Jiao 《Chinese Chemical Letters》 2025年第6期752-758,共7页
Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic ... Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts. 展开更多
关键词 Morphology engineering Electronic structure regulation Metal nitrides Hydogen evolution reaction Urea oxidation reaction
原文传递
Weakened interfacial O_(2)adsorption by modulating charge density of Pd atom in the vertical-growth Bi nanosheets toward boosted H_(2)O_(2)photosynthesis
16
作者 Haiyang Shi Shaoqi Ding +8 位作者 Yanan Tian Shuaikang Li Liqun Ye Ruiping Li Yingping Huang Feng Chen Ping Wang Xuefei Wang Chuncheng Chen 《Journal of Energy Chemistry》 2025年第8期682-692,共11页
Pd catalyst with high activity and selectivity for O_(2)reduction to H_(2)O_(2)is highly desirable.However,metallic Pd catalyst suffers from limited activity and selectivity in H_(2)O_(2)photosynthesis due to intrinsi... Pd catalyst with high activity and selectivity for O_(2)reduction to H_(2)O_(2)is highly desirable.However,metallic Pd catalyst suffers from limited activity and selectivity in H_(2)O_(2)photosynthesis due to intrinsically strong O_(2)adsorption at Pd atom sites.Herein,a strategy is proposed to modulate the electronic structure,aiming to weaken O_(2)adsorption and further enhance O_(2)-reduction selectivity through the creation of highly dispersed and electron-enriched Pd^(δ-)atom sites.To achieve this,a novel photochemical plating approach is employed to selectively grow vertical Bi nanosheets on the(010)facet of BiVO_(4).This process confines highly dispersed Pd atoms within the Bi nanosheets,forming a PdBi cocatalyst that significantly boosts H_(2)O_(2)photosynthesis.Notably,the optimized PdBi/BiVO_(4)photocatalyst achieves a high H_(2)O_(2)production concentration of 2246.43μmol L−1,with an apparent quantum efficiency(AQE)of 11.16%,realizing a 1.74-fold enhancement in activity compared to Pd/BiVO_(4)(1289.28μmol L^(−1)).Theoretical calculation and experimental results confirm that the vertical-growth Bi nanosheets induce the formation of well-dispersed and electron-enriched Pd^(δ−)atom sites.This accordingly increases the antibonding-orbital occupancy of Pd-O_(ads),thereby weakening O_(2)adsorption and ultimately facilitating selective O_(2)reduction for photocatalytic H_(2)O_(2)production.This rational design of Pd-based catalysts provides a promising strategy for modulating the electronic structure of active atoms to advance artificial photosynthesis. 展开更多
关键词 BiVO_(4) Electron structure regulation Electron-enriched Pd^(δ-)atoms Vertical-growth Bi nanosheets H_(2)O_(2)photosynthesis
在线阅读 下载PDF
Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction 被引量:3
17
作者 Minmin Wang Hui Zhang +1 位作者 Yunqi Liu Yuan Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期56-72,I0003,共18页
The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric ene... The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric energy, fuel cell has attracted more and more attention. For fuel cells, the oxygen reduction reaction(ORR) at the cathode is the core reaction, and the design and development of high-performance ORR catalysts remain quite challenging. Since the microenvironment of the active center of single atom catalysts(SACs) has an important influence on its catalytic performance, it has been a research focus to improve the ORR activity and stability of electrocatalysts by adjusting the structure of the active center through reasonable structural regulation methods. In this review, we reviewed the preparation and structure–activity relationship of SACs for ORR. Then, the structural precision regulation methods for improving the activity and stability of ORR electrocatalysts are discussed. And the advanced in-situ characterization techniques for revealing the changes of active sites in the electrocatalytic ORR process are summarized. Finally, the challenges and future design directions of SACs for ORR are discussed. This work will provide important reference value for the design and synthesis of SACs with high activity and stability for ORR. 展开更多
关键词 ELECTROCATALYST Oxygen reduction reaction Structure regulation Single atom catalysts In-situ characterization technique
在线阅读 下载PDF
Delicate synthesis of quasi-inverse opal structural Na_(3)V_(2)(PO_(4))_(3)/N-C and Na4MnV(PO_(4))_(3)/N-C as cathode for high-rate sodium-ion batteries 被引量:3
18
作者 Xin-Ran Qi Yuan Liu +10 位作者 Lin-Lin Ma Bao-Xiu Hou Hong-Wei Zhang Xiao-Hui Li Ya-Shi Wang Yi-Qing Hui Ruo-Xun Wang Chong-Yang Bai Hao Liu Jian-Jun Song Xiao-Xian Zhao 《Rare Metals》 SCIE EI CAS CSCD 2022年第5期1637-1646,共10页
Poor conductivity and sluggish Na^(+) diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor(NASICON) in sodium-ion batteries. In this work, we report a simple approach to ... Poor conductivity and sluggish Na^(+) diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor(NASICON) in sodium-ion batteries. In this work, we report a simple approach to synthesize quasi-inverse opal structural NASICON/N-doped carbon for the first time by a delicate one-pot solution-freeze drying-calcination process, aiming at fostering the overall electrochemical performance. Especially, the quasi-inverse opal structural Na_(3)V_(2)(PO_(4))_(3)/N-C(Q-NVP/N-C) displayed continuous pores, which provides interconnected channels for electrolyte permeation and abundant contacting interfaces between electrolyte and materials, resulting in faster kinetics of redox reaction and higher proportion of capacitive behavior.As a cathode material for sodium-ion batteries, the Q-NVP/N-C exhibits high specific capacity of 115 mAh·g^(-1) at 1C, still 61 mAh·g^(-1) at ultra-high current density of 100C,and a specific capacity of 89.7mAh·g^(-1) after 2000 cycles at 20C.This work displays the general validity of preparation method for not only Q-NVP/N-C,but also Na_(3)V_(2)(PO_(4))_(3),which provides a prospect for delicate synthesis of NASICON materials with excellent electrochemical performance. 展开更多
关键词 Sodium battery structural regulation Inverse opal structure Sodium super-ionic conductor(NASICON) Na_(3)V_(2)(PO_(4))_(3)
原文传递
Emerging two-dimensional metallenes:Recent advances in structural regulations and electrocatalytic applications 被引量:1
19
作者 Jiandong Wu Xiao Zhao +1 位作者 Xiaoqiang Cui Weitao Zheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2802-2814,共13页
Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for v... Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area. 展开更多
关键词 Metallenes Ultrathin nanosheets structurally regulating strategy ELECTROCATALYSIS Enhancement mechanism
在线阅读 下载PDF
Structural Fiscal Regulation and Choice of Instruments in the New Normal 被引量:1
20
作者 卞志村 杨源源 《China Economist》 2017年第5期22-38,共17页
Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systema... Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systematic research framework for analyzing the economic effects of structural fiscal instruments. Our study findsthat great differences exist in the macroeconomic effects of different fiscal instruments, suggesting that the government should prudently select these fiscal instruments in fiscal macro-control. The simulating results of fiscal shocks show that the effect of tax cut is superior to the effect of increased spending. In the context of slowing economic growth and less potent stimulation policy, the government should transform its previous regulatory approach of fiscal policy and shift from hefty spending stimulus policy to structural tax cuts. This paper believes that China should step up the implementation of public-private partnership, increase its spending on social security, healthcare, pension and public services and facilitate the transition toward a service-based government; and that tax policy should focus on structural tax cuts on consumption to promote the transition of demand structure toward consumption-driven. 展开更多
关键词 new normal structural regulation New Keynesian model fiscal instruments
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部