期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
1
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Cation potential guiding structural regulation of lithium halide superionic conductors
2
作者 Yinghui Xia Yixi Lin Zhenming Xu 《Chinese Journal of Structural Chemistry》 2025年第3期12-14,共3页
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat... Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements. 展开更多
关键词 metal elements lithium halide solid state electrolytes structural regulation halogen elements electrolyte material cation potential ionic conductivityhigh lithium halide superionic conductors
原文传递
Structural regulation of electrocatalysts for room-temperature sodium-sulfur batteries
3
作者 Liang Wu Xi-Long Dou +3 位作者 Xiao-Yun Wang Zi-Jiang Liu Wei-Han Li Ying Wu 《Rare Metals》 2025年第4期2294-2313,共20页
Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy dens... Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy density.However,the practical application of RT Na-S batteries is hindered by low reversible capacity and unsatisfying long-cycling performance arising from the severe shuttle effect and sluggish S redox kinetics.This review provides an overview of recent efforts for the optimization strategies of the electronic structure of catalysts via catalyst engineering to enhance the adsorption and catalytic activity toward soluble long-chain sodium polysulfides(NaPSs).Finally,the current challenges and prospects for further optimization strategies of catalysts,understanding catalysis and structural evolution mechanism,and achieving practical applications are highlighted to meet the commercial requirements of RT Na-S batteries. 展开更多
关键词 Room-temperature sodium-sulfur batteries Catalyst structural regulation
原文传递
Effects of anions on the structural regulation of Zn‑salen‑modified metal‑organic cage
4
作者 GUO Qiaojia CAI Junkai DUAN Chunying 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2203-2211,共9页
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa... By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-vip electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold. 展开更多
关键词 metal-organic cage Zn-salen host-vip electrostatic interaction ANIONS structural regulation
在线阅读 下载PDF
Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction 被引量:4
5
作者 Minmin Wang Hui Zhang +1 位作者 Yunqi Liu Yuan Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期56-72,I0003,共18页
The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric ene... The development and utilization of renewable clean energy can effectively solve the two major problems of energy and environment. As an efficient power generation device that converts hydrogen energy into electric energy, fuel cell has attracted more and more attention. For fuel cells, the oxygen reduction reaction(ORR) at the cathode is the core reaction, and the design and development of high-performance ORR catalysts remain quite challenging. Since the microenvironment of the active center of single atom catalysts(SACs) has an important influence on its catalytic performance, it has been a research focus to improve the ORR activity and stability of electrocatalysts by adjusting the structure of the active center through reasonable structural regulation methods. In this review, we reviewed the preparation and structure–activity relationship of SACs for ORR. Then, the structural precision regulation methods for improving the activity and stability of ORR electrocatalysts are discussed. And the advanced in-situ characterization techniques for revealing the changes of active sites in the electrocatalytic ORR process are summarized. Finally, the challenges and future design directions of SACs for ORR are discussed. This work will provide important reference value for the design and synthesis of SACs with high activity and stability for ORR. 展开更多
关键词 ELECTROCATALYST Oxygen reduction reaction Structure regulation Single atom catalysts In-situ characterization technique
在线阅读 下载PDF
Emerging two-dimensional metallenes:Recent advances in structural regulations and electrocatalytic applications 被引量:1
6
作者 Jiandong Wu Xiao Zhao +1 位作者 Xiaoqiang Cui Weitao Zheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2802-2814,共13页
Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for v... Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area. 展开更多
关键词 Metallenes Ultrathin nanosheets structurally regulating strategy ELECTROCATALYSIS Enhancement mechanism
在线阅读 下载PDF
Structural regulation of imine-linked benzothiadiazole-based covalent organic frameworks for efficient photocatalysis
7
作者 Xin Zhao Yuancheng Wang +6 位作者 Guangchao Han Guoye Yu Guanshi Ren Xiang Li Tongyang Zhang Lishui Sun Yingjie Zhao 《Science China Chemistry》 2025年第8期3707-3713,共7页
Slightly structural variation often leads to huge changes in the properties of the covalent organic frameworks(COFs).The atomlevel precisely arranged structures of COFs make it possible to understand the structure-per... Slightly structural variation often leads to huge changes in the properties of the covalent organic frameworks(COFs).The atomlevel precisely arranged structures of COFs make it possible to understand the structure-performance relationship.Here,four highly crystalline imine-linked benzothiadiazole-based COFs were constructed from precisely designed monomers.The effects of imine linkage orientation,theπbridge between the benzothiadiazole unit and imine linkage on the photocatalysis performance were systematically studied.It is noted that photocatalytic performance can be dramatically improved when the imine carbon atoms are attached to the pyrene-based unit.In addition,the extension of theπbridge in the benzothiadiazole units could obviously enhance the photocatalytic hydrogen evolution and weaken the hydrogen peroxide generation.The PC-NPB containing the diphenylbenzothiadiazole building block exhibited the highest hydrogen evolution rate of 15.7 mmol h^(-1)g^(-1),4.4 times higher than that of non-phenyl-substituted benzothiadiazole-containing PC-NB.Interestingly,PC-NB displayed the highest hydrogen peroxide generation rate of 1376μmol h^(-1)g^(-1),2.8 times higher than that of PC-NPB. 展开更多
关键词 covalent organic frameworks structural regulation benzothiadiazole unit PHOTOCATALYSIS
原文传递
Atomically Dispersed Catalysts:Precise Synthesis,Structural Regulation,and Structure-Activity Relationship 被引量:3
8
作者 Yun Gao Dingsheng Wang 《CCS Chemistry》 CSCD 2024年第4期833-855,共23页
Atomically dispersed catalysts(ADCs)have been diffusely researched for the development of advanced catalytic processes owing to their welldefined structure,high atomic utilization,and outstanding activity.Precisely de... Atomically dispersed catalysts(ADCs)have been diffusely researched for the development of advanced catalytic processes owing to their welldefined structure,high atomic utilization,and outstanding activity.Precisely decoding the intrinsic structures and coordination microenvironments of ADCs still confronts significant challenges.Overcoming these challenges is important for profound understanding of the structure-activity relationships and directing the future design of ADCs.Herein,this minireview summarizes recent progress and advanced characterization techniques for the engineering of ADCs,including single-atom catalysts,dualatom catalysts,and atomic cluster catalysts with regard to precise synthesis,structural regulation,and the structure-performance relationship.The catalytic merits and regulation strategies of recent breakthroughs in energy conversion,enzyme mimicry,and organic synthesis are thoroughly discussed to disclose the catalytic mechanism-guided ADCs design.Finally,a comprehensive summary of the future challenges and potential prospects is presented to stimulate more design and application possibilities for ADCs.We believe that this comprehensive minireview will open up novel pathways for the widespread utilization of ADCs in diverse catalytic processes. 展开更多
关键词 atomically dispersed catalysts precise synthesis structural regulation structure-activity relationship and catalytic application
在线阅读 下载PDF
Structural Regulations of Layered Borates:From Centric Layers to Chiral Porous Layers 被引量:2
9
作者 Chong-An Chen Guo-Yu Yang 《Precision Chemistry》 2024年第6期256-262,共7页
Three pentaborates were made by precise structural regulations under hydrothermal conditions,namely,K_(2)Cs-[B_(5)O_(8)(OH)]·0.5CO_(3)(1),KNa_(4)Cs[B_(5)O_(8)(OH)]_(2)·2OH(2),and NaBa[B_(5)O_(8.5)(OH)](3).Co... Three pentaborates were made by precise structural regulations under hydrothermal conditions,namely,K_(2)Cs-[B_(5)O_(8)(OH)]·0.5CO_(3)(1),KNa_(4)Cs[B_(5)O_(8)(OH)]_(2)·2OH(2),and NaBa[B_(5)O_(8.5)(OH)](3).Compound 1 features the typical 2D layers constructed from the four-connected B_(5)O_(10)(OH)clusters.By adjustment of the reactants and pH values of the systems to remove interlayered CO_(3)^(2−)groups,the centric layers in 1 were transformed to the chiral layers of 2.By further adjusting cationic templates based on host−vip charge matching,the B_(5)O_(10)(OH)cluster unit was transformed to B_(5)O_(11)(OH),which built the chiral porous layers of 3.The chiral compounds 2 and 3 exhibit moderate second harmonic generation(SHG)responses of 1.1 and 1.7 times that of KDP(KH_(2)PO_(4)).The structural regulations actualize the evolutions on both structural symmetries and dimensions. 展开更多
关键词 oxoboron cluster hydrothermal syntheses LAYERS structural regulation nonlinear optical property
在线阅读 下载PDF
Synthesis of Highly Luminescent LnMOFs through Structural Regulation 被引量:1
10
作者 YU Xiao-Bo CHEN Zhao +4 位作者 MA Yuan-Jie LI Ling CHANG Wen-Ting LI Bo ZENG Cheng-Hui 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第3期270-276,I0015,共8页
Two series of three dimensional(3D)lanthanide metal-organic frameworks(LnMOFs)of[Ln(tftpa)1.5(phen)(H_(2)O)]_(n)(Ln=Sm 1a,Eu 1b,Tb 1c,Dy 1d,H2tftpa=tetrafluoroterephthalic acid,phen=1,10-phenanthrolin)and[Ln(tftpa)1.5... Two series of three dimensional(3D)lanthanide metal-organic frameworks(LnMOFs)of[Ln(tftpa)1.5(phen)(H_(2)O)]_(n)(Ln=Sm 1a,Eu 1b,Tb 1c,Dy 1d,H2tftpa=tetrafluoroterephthalic acid,phen=1,10-phenanthrolin)and[Ln(tftpa)1.5(bpy)(H_(2)O)]_(n)(Ln=Sm 2a,Eu 2b,Tb 2c,Dy 2d,bpy=2,2'-bipyridine)are obtained by structural regulation.Results reveal that the 3D LnMOFs show high water-and thermal-stability.Interestingly,through selecting the perfluorinated ligand,and using bpy as an auxiliary ligand to hold back the solvents near to the lanthanide ions,2b,and 2c show high luminescence quantum yield(QY)of 74.50%and 60.03%,respectively.In order to further improve the luminescence QY,the auxiliary ligand of phen with larger conjugation and more rigid structure is synthesized to replace bpy,and fortunately,higher luminescence QY of 80.73%(1b)and 75.17%(1c)are realized. 展开更多
关键词 highly luminescent LnMOFs structural regulation luminescence quantum yield
原文传递
Structural Fiscal Regulation and Choice of Instruments in the New Normal 被引量:1
11
作者 卞志村 杨源源 《China Economist》 2017年第5期22-38,共17页
Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systema... Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systematic research framework for analyzing the economic effects of structural fiscal instruments. Our study findsthat great differences exist in the macroeconomic effects of different fiscal instruments, suggesting that the government should prudently select these fiscal instruments in fiscal macro-control. The simulating results of fiscal shocks show that the effect of tax cut is superior to the effect of increased spending. In the context of slowing economic growth and less potent stimulation policy, the government should transform its previous regulatory approach of fiscal policy and shift from hefty spending stimulus policy to structural tax cuts. This paper believes that China should step up the implementation of public-private partnership, increase its spending on social security, healthcare, pension and public services and facilitate the transition toward a service-based government; and that tax policy should focus on structural tax cuts on consumption to promote the transition of demand structure toward consumption-driven. 展开更多
关键词 new normal structural regulation New Keynesian model fiscal instruments
在线阅读 下载PDF
Structural regulation strategies towards high performance organic materials for next generation aqueous Zn-based batteries 被引量:1
12
作者 Diyu Xu Haozhe Zhang +2 位作者 Lijun Zhou Xingyuan Gao Xihong Lu 《ChemPhysMater》 2022年第2期86-101,共16页
Environmental degradation has promoted the exploitation of novel energy-storage devices.Electrochemical en-ergy technologies,including supercapacitors and aqueous batteries,are highly desirable for energy storage appl... Environmental degradation has promoted the exploitation of novel energy-storage devices.Electrochemical en-ergy technologies,including supercapacitors and aqueous batteries,are highly desirable for energy storage appli-cations.Among them,aqueous zinc-based batteries(AZBs)are highly valued because of their inherent safety and low cost.One class of emerging materials favorably employed in these devices are organic cathodes,featuring resource renewability,cost-effectiveness,and adjustable electrochemical properties via facile structural modi-fication compared to the conventional inorganic cathodes.To date,various types of organic compounds have been developed and applied to AZBs.This paper comprehensively reviews the mechanisms involved in organic electrode material reactions,highlighting the structural modifications,including morphological,molecular,func-tional group,crystal,and electronic structures,affecting the final device performance.Conclusively,the prospects of practical applications of zinc/organic aqueous battery are delineated. 展开更多
关键词 Aqueous batteries Zn-based batteries Organic materials structural regulation Morphological structure
原文传递
Rational design and structural regulation of near-infrared silver chalcogenide quantum dots
13
作者 Zhen-Ya Liu Wei Zhao +4 位作者 Li-Ming Chen Yan-Yan Chen Zhi-Gang Wang An-An Liu Dai-Wen Pang 《Nano Research》 SCIE EI CSCD 2024年第12期10585-10606,共22页
Silver chalcogenides(Ag_(2)E;E=S,Se,or Te)quantum dots(QDs)have emerged as promising candidates for near-infrared(NIR)applications.However,their narrow bandgap and small exciton Bohr radius render the optical properti... Silver chalcogenides(Ag_(2)E;E=S,Se,or Te)quantum dots(QDs)have emerged as promising candidates for near-infrared(NIR)applications.However,their narrow bandgap and small exciton Bohr radius render the optical properties of Ag_(2)E QDs highly sensitive to surface and size variations.Moreover,the propensity for the formation of silver impurities and their low solubility product constants pose challenges in their controllable synthesis.Recent advancements have deepened our understanding of the relationship between the multi-hierarchical structure of Ag_(2)E QDs and their optical properties.Through rational design and precise structural regulation,the performance of Ag_(2)E QDs has been significantly enhanced across various applications.This review provides a comprehensive overview of historical and current progress in the synthesis and structural regulation of Ag_(2)E QDs,encompassing aspects such as size control,crystal structure engineering,and surface/interface engineering.Additionally,it discusses outstanding challenges and potential opportunities in this field.The aim of this review is to promote the custom synthesis of Ag_(2)E QDs for applications in biological imaging,and optoelectronics applications. 展开更多
关键词 silver chalcogenides structural regulation size control crystal engineering surface and interface regulation
原文传递
Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries
14
作者 Rui Zhou Rui Liu +4 位作者 Yun-Nuo Li Si-Jie Jiang Tian-Tian Jing Yan-Song Xu Fei-Fei Cao 《电化学(中英文)》 北大核心 2025年第8期34-43,共10页
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type... Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C. 展开更多
关键词 Dual-ion battery Biomass hard carbon structural regulation High operating voltage High rate
在线阅读 下载PDF
High efficiency electromagnetic waves absorption of ferrite/polypyrrole composite based on precise structural control of rare earth doping
15
作者 Hao Shi Han Gao +7 位作者 Long Qin Jiang-Tao Yuan Lin-Xuan Tang Zhuo-Rui Wang Wei-Jin Li Zeng-Hui Feng Yang Wang A-Ming Xie 《Rare Metals》 2025年第8期5621-5632,共12页
Structural manipulation plays a crucial role in material design,exerting a significant influence on various aspects of material performance.However,the impact of material microstructure on electromagnetic waves absorp... Structural manipulation plays a crucial role in material design,exerting a significant influence on various aspects of material performance.However,the impact of material microstructure on electromagnetic waves absorption properties has not been thoroughly investigated.In this study,based on ferrites,we controlled the micros tructural morphology by doping with light rare earth element Nd,and then formed heterogeneous structures through composite polypyrrole to enhance its performance.The structural changes in neodymium-doped ferrites and their corresponding variations in performance were systematically analyzed.The results indicate that Nd^(3+)ions doping has a pronounced effect on the microstructure of ferrites,significantly improving their dielectric loss capability for electromagnetic waves.The sample with optimal performance,Sr_(0.75)Nd_(0.25)Co_(2)Fe_(16)O_(27)@PPy,has a value of minimum reflection loss that can reach-63.11 dB,and the effective absorption bandwidth achieves 6.40 GHz at2.27 mm.This study provides instructive thinking for the structural manipulation of MA materials. 展开更多
关键词 structural regulation Microstructural morphology FERRITE Rare earth element Electromagnetic wave absorption
原文传递
High magnetic field-induced structural transformation of NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures for enhancing lithium storage performance
16
作者 Jia-qi LIU Rong-yuan ZHANG +5 位作者 Xiao-yang WANG Jun WANG Tie LIU Wei-bin CUI Qiang WANG Shuang YUAN 《Transactions of Nonferrous Metals Society of China》 2025年第3期932-944,共13页
In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare... In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance. 展开更多
关键词 high magnetic field NiFe_(2)O_(4)/Fe_(2)O_(3) HETEROSTRUCTURE structural regulation lithium-ion battery anode
在线阅读 下载PDF
Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO_(2)reduction 被引量:3
17
作者 Minmin Wang Min Li +2 位作者 Yunqi Liu Chao Zhang Yuan Pan 《Nano Research》 SCIE EI CSCD 2022年第6期4925-4941,共17页
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)is considered an efficient way to convert CO_(2)into high-value-added chemicals,and thus is of significant social and economic value.Metal single-atomic site catalyst... Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)is considered an efficient way to convert CO_(2)into high-value-added chemicals,and thus is of significant social and economic value.Metal single-atomic site catalysts(SASCs)generally have excellent selectivity because of their 100%atomic utilization and uniform structure of active sites,and thus promise a broad range of applications.However,SASCs still face challenges such as low intrinsic activity and low density of active sites.Precise regulation of the microstructures of SASCs is an effective method to improve their CO_(2)RR performance and to obtain deep reduction products.In this article,we systematically summarize the current research status of SASCs developed for highly efficient catalysis of CO_(2)RR,discuss the various structural regulation methods for enhanced activity and selectivity of SASCs for CO_(2)RR,and review the application of in-situ characterization technologies in the SASC-catalyzed CO_(2)RR.We then discuss the problems yet to be solved in this area,and propose the future directions of the research on the design and application of SASCs for CO_(2)RR. 展开更多
关键词 ELECTROCATALYSIS single-atomic site catalyst structure regulation active site carbon dioxide reduction reaction
原文传递
Structural regulation of single-atom catalysts for enhanced catalytic oxidation performance of volatile organic compounds 被引量:1
18
作者 Fei Jiang Zhiyuan Zhou +6 位作者 Chao Zhang Chao Feng Gaoyan Xiong Yunxia Wang Zhaoyang Fei Yunqi Liu Yuan Pan 《Nano Research》 SCIE EI CSCD 2023年第2期1967-1983,共17页
The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which... The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which is of important social value.Singleatom catalysts(SACs)with 100%atom utilization and uniform active sites usually have high activity and high product selectivity,and promise a broad range of applications.Precise regulation of the microstructures of SACs by means of defect engineering,interface engineering,and electronic effects can further improve the catalytic performance of VOCs oxidation.In this review,we introduce the mechanisms of VOCs oxidation,and systematically summarize the recent research progress of SACs in catalytic VOCs total oxidation into CO_(2)and H_(2)O,and then discuss the effects of various structural regulation strategies on the catalytic performance.Finally,we summarize the current problems yet to be solved and challenges currently faced in this field,and propose future design and research ideas for SACs in catalytic oxidation of VOCs. 展开更多
关键词 single-atom catalysts structure regulation active site volatile organic compounds catalytic oxidation reaction
原文传递
Structural characteristics,surface properties and methylene blue adsorption application of halloysite nanotubes regulated with controllable treatment processes
19
作者 Xiaoyu Jiang Sikai Zhao +5 位作者 Jiafang Zhang Haiyi Lü Jie Wang Wenbao Liu Baoyu Cui Yanbai Shen 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1331-1344,共14页
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre... To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications. 展开更多
关键词 halloysite nanotubes structure regulation methylene blue adsorption CALCINATION acid treatment alkali treatment
在线阅读 下载PDF
Electronic structure regulation inducing robust solid electrolyte interphase for stable anode-free sodium metal batteries
20
作者 Peng Xu Yinghan Liu +3 位作者 Mulan Qin Fei Huang Shuquan Liang Guozhao Fang 《Advanced Powder Materials》 2025年第4期21-29,共9页
Anode-free sodium metal batteries(AFSMBs)have gained attention as next-generation storage systems with high energy density and cost-effectiveness.However,non-uniform sodium(Na)deposition and an unsteady solid electrol... Anode-free sodium metal batteries(AFSMBs)have gained attention as next-generation storage systems with high energy density and cost-effectiveness.However,non-uniform sodium(Na)deposition and an unsteady solid electrolyte interphase(SEI)lead to dendrite-related issues and severe irreversible Na^(+)plating/stripping,greatly aggravating their cycle deterioration.In this study,we effectively modified the 3D current collector's electronic structure by introducing Zn-N_(x)active sites(Zn-CNF),which enhances lateral Na^(+)diffusion and the Na planar growth,enabling uniform deep Na deposition at an exceptionally high capacity of 10 mA h cm^(-2).Furthermore,the Zn-N_(x)bonds enhance the adsorption capacity of PF6and contribute to forming a stable inorganic-rich SEI layer.Consequently,Zn-CNF with the electronic structure regulation endows an ultra-low nucleation overpotential(8 mV)and ultra-high Coulombic efficiency of 99.94%over 1,600 cycles.Symmetric cells demonstrate stable Na^(+)plating/stripping behavior for more than 4,400 h at 1 mA cm^(-2).Moreover,under high cathode loading(7.97 mg cm^(-2)),the AFSMBs achieve a high energy density of 374 W h kg^(-1)and retain a high discharge capacity of 82.49 mA h g^(-1)with a capacity retention of 80.4%after 120 cycles.This work proposes a viable strategy to achieving high-energy-density AFSMBs. 展开更多
关键词 Sodium-metal batteries Anode-free Electronic structure regulation Solid-electrolyte interphase Sodium deposition
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部