期刊文献+
共找到4,584篇文章
< 1 2 230 >
每页显示 20 50 100
A Residual Convolutional Autoencoder-Based Structural Damage Detection Approach for Deep-Sea Mining Riser Considering Data Fusion
1
作者 JIANG Yufeng ZHENG Zepeng +4 位作者 LIU Yu WANG Shuqing LIU Yuchi YANG Zeyun YANG Yuan 《Journal of Ocean University of China》 2025年第6期1657-1669,共13页
A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safe... A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safety hazards.However,identifying modal parameters for structural health monitoring remains a major challenge due to its large deformations and flexibility.Vibration signal-based methods are essential for detecting damage and enabling timely maintenance to minimize losses.However,accurately extracting features from one-dimensional(1D)signals is often hindered by various environmental factors and measurement noises.To address this challenge,a novel approach based on a residual convolutional auto-encoder(RCAE)is proposed for detecting damage in deep-sea mining risers,incorporating a data fusion strategy.First,principal component analysis(PCA)is applied to reduce environmental fluctuations and fuse multisensor strain readings.Subsequently,a 1D-RCAE is used to extract damage-sensitive features(DSFs)from the fused dataset.A Mahalanobis distance indicator is established to compare the DSFs of the testing and healthy risers.The specific threshold for these distances is determined using the 3σcriterion,which is employed to assess whether damage has occurred in the testing riser.The effectiveness and robustness of the proposed approach are verified through numerical simulations of a 500-m riser and experimental tests on a 6-m riser.Moreover,the impact of contaminated noise and environmental fluctuations is examined.Results show that the proposed PCA-1D-RCAE approach can effectively detect damage and is resilient to measurement noise and environmental fluctuations.The accuracy exceeds 98%under noise-free conditions and remains above 90%even with 10 dB noise.This novel approach has the potential to establish a new standard for evaluating the health and integrity of risers during mining operations,thereby reducing the high costs and risks associated with failures.Maintenance activities can be scheduled more efficiently by enabling early and accurate detection of riser damage,minimizing downtime and avoiding catastrophic failures. 展开更多
关键词 deep-sea mining riser structural damage detection residual convolutional auto-encoder data fusion principal component analysis
在线阅读 下载PDF
Structural damage detection method based on information fusion technique 被引量:1
2
作者 刘涛 李爱群 +1 位作者 丁幼亮 费庆国 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期201-205,共5页
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification... Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures. 展开更多
关键词 multi-source information fusion structural damage detection Bayes method D-S evidence theory
在线阅读 下载PDF
Probability of detection and anomaly distribution modeling for surface defects in tenon-groove structures of aeroengine disks 被引量:1
3
作者 Hongzhuo LIU Disi YANG +3 位作者 Han YAN Zixu GUO Dawei HUANG Xiaojun YAN 《Chinese Journal of Aeronautics》 2025年第10期363-383,共21页
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ... To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF. 展开更多
关键词 Aeroengine disks Anomaly distribution Probabilistic damage tolerance Probability of detection(POD) structural integrity Tenon-groove structures Transfer functions
原文传递
YOLO-L:A High-Precision Model for Defect Detection in Lattice Structures
4
作者 Baosu Guo Hang Li +5 位作者 Shichen Ding Longhua Xu Meina Qu Dijia Zhang Yintang Wen Chuanzhen Huang 《Additive Manufacturing Frontiers》 2025年第2期185-193,共9页
High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical propert... High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures. 展开更多
关键词 Defect detecting Metal lattice structure YOLO Additive manufacturing
在线阅读 下载PDF
Ultrasonic Detection of Disbond Defects in Steel-Epoxy-Steel Sandwich Structures
5
作者 Zhifei Xiao Shuying Tang +5 位作者 Han Jiang Jing Rao Limei Fan Zhiqiang Cheng Rongguang Li Ling Sun 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期137-147,共11页
The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,making them suitable for pipeline rehabilitation with effective repair and long-term durability.However,the repair... The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,making them suitable for pipeline rehabilitation with effective repair and long-term durability.However,the repair quality can be compromised by disbond between the steel and epoxy layers,whichmay result frominsufficient epoxy injection.Conventional ultrasonic testing faces challenges in accurately locating disbond defects due to aliased echo interference at interfaces.This paper proposes a signal processing algorithm for improving the accuracy of ultrasonic reflection method for detecting disbond defects between steel and epoxy layers.First,a coati optimization algorithmvariational mode decomposition(COA-VMD)is applied to adaptively decompose the ultrasonic signals and extract the intrinsic mode function components that show high correlation with the defect-related signals.Then,by calculating the relative reflectance at the interface and establishing a quantitative evaluation index based on acoustic impedance discontinuity,the locations of disbond defects are identified.Experimental results demonstrate that this method can effectively detect the locations of disbond defects between steel and epoxy layers. 展开更多
关键词 disbond detection sandwich structures ultrasonic testing variational mode decomposition
在线阅读 下载PDF
Output only modal identification and structural damage detection using time frequency & wavelet techniques 被引量:14
6
作者 S.Nagarajaiah B.Basu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第4期583-605,共23页
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari... The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed. 展开更多
关键词 Time-frequency methods short time Fourier transform Hilbert transform WAVELETS modal identification:output only structural health monitoring damage detection
在线阅读 下载PDF
The Calibration Method of Line Structured Light Sensor for Integrated Position and Pose Detection of Highway Guardrail Inspection Robots
7
作者 WANG Rui BAI Jiadi +4 位作者 XUE Yingqi PENG Lu FENG Xiaofan DING Ailing WEI Baojiang 《Wuhan University Journal of Natural Sciences》 2025年第4期367-378,共12页
The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the probl... The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods. 展开更多
关键词 highway corrugated guardrail structured light visual scanning structured light sensor calibration guardrail detection robot robot motion posture parameters
原文传递
Biomimetic Engineering High-Sensitivity Flexible Pressure Sensors with Ultra-Wide Pressure Detection Range via Synergistic Interlocked Structures and Multi-scale Micro-dome Interfaces
8
作者 Junqiu Zhang Jiachao Wu +16 位作者 Lili Liu Tao Sun Xiangbo Gu Zijian Shi Xueyang Li Xueping Zhang Yu Chen Jiqi Gao Kejun Wang Bin Zhu Wenze Sun Yutao Mei Yubo Yan Yan Li Zhijing Wu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第5期2550-2560,共11页
Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigi... Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range. 展开更多
关键词 Biomimetic engineering Flexible pressure sensors Ultrahigh sensitivity and wide-range detection Multiscale interface Interlocked structure
在线阅读 下载PDF
Structure-Aware Malicious Behavior Detection through 2D Spatio-Temporal Modeling of Process Hierarchies
9
作者 Seong-Su Yoon Dong-Hyuk Shin Ieck-Chae Euom 《Computer Modeling in Engineering & Sciences》 2025年第11期2683-2706,共24页
With the continuous expansion of digital infrastructures,malicious behaviors in host systems have become increasingly sophisticated,often spanning multiple processes and employing obfuscation techniques to evade detec... With the continuous expansion of digital infrastructures,malicious behaviors in host systems have become increasingly sophisticated,often spanning multiple processes and employing obfuscation techniques to evade detection.Audit logs,such as Sysmon,offer valuable insights;however,existing approaches typically flatten event sequences or rely on generic graph models,thereby discarding the natural parent-child process hierarchy that is critical for analyzing multiprocess attacks.This paper proposes a structure-aware threat detection framework that transforms audit logs into a unified two-dimensional(2D)spatio-temporal representation,where process hierarchy is modeled as the spatial axis and event chronology as the temporal axis.In addition,entropy-based features are incorporated to robustly capture obfuscated and non-linguistic strings,overcoming the limitations of semantic embeddings.The model’s performance was evaluated on publicly available datasets,achieving competitive results with an accuracy exceeding 95%and an F1-score of at least 0.94.The proposed approach provides a promising and reproducible solution for detecting attacks with unknown indicators of compromise(IoCs)by analyzing the relationships and behaviors of processes recorded in large-scale audit logs. 展开更多
关键词 System security anomaly detection host-based log analysis hierarchical process structure machine learning deep learning malicious behavior
在线阅读 下载PDF
Structural Sparse Representation for Object Detection 被引量:1
10
作者 FANG Wenhua CHEN Jun HU Ruimin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期318-322,共5页
Classic sparse representation, as one of prevalent feature learning methods, is successfully applied for different computer vision tasks. However it has some intrinsic defects in object detection. Firstly, how to lear... Classic sparse representation, as one of prevalent feature learning methods, is successfully applied for different computer vision tasks. However it has some intrinsic defects in object detection. Firstly, how to learn a discriminative dictionary for object detection is a hard problem. Secondly, it is usually very time-consuming to learn dictionary based features in a traditional exhaustive search manner like sliding window. In this paper, we propose a novel feature learning framework for object detection with the structure sparsity constraint and classification error minimization constraint to learn a discriminative dictionary. For improving the efficiency, we just learn sparse representation coefficients from object candidate regions and feed them to a kernelized SVM classifier. Experiments on INRIA Person Dataset and Pascal VOC 2007 challenge dataset clearly demonstrate the effectiveness of the proposed approach compared with two state-of-the-art baselines. 展开更多
关键词 feature learning structural sparse coding SVM object detection
原文传递
Estimation of Probability of Damage Detection in Offshore Structural Inspection 被引量:1
11
作者 Song Ruxin and Lu Xinsen Postdoctor, Dept. of Naval Arch, and Ocean Engng. Shanghai Jiao Tong University, Shanghai 20030 . Professor, Dept. of Naval Arch, and Ocean Engng. shanghai Jiao Tong University, Shanghai 20030 《China Ocean Engineering》 SCIE EI 1996年第3期261-268,共8页
To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly... To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly existing in offshore structures. The fuzzy-set theory is applied to estimate human errors through the definition of inspection quality. Expressions of inspection quality are achieved. To verify the validity and correctness of the expressions, the data from an offshore platform field inspection of evaluation results of human errors affecting inspection quality are used to estimate the parameters of the POD. The results show that the present models can provide basis for further study of ofTshore structural inspection reliability. 展开更多
关键词 offshore structures probability of detection inspection reliability human error
在线阅读 下载PDF
Effects of excitation frequency on detection accuracy of orthogonal wavelet decomposition for structural health monitoring 被引量:1
12
作者 Raul J.Alonso Mohammad Noori +4 位作者 Soheil Saadat Arata MasudaDepartment of Mechanical and System Engineering Kyoto Institute of Technology Matsugasaki Sakyo-ku 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期101-106,共6页
Accurate estimation of stiffness loss is a challenging problem in structural health monitoring.In this studyorthogonal wavelet decomposition is used for identifying the stiffness loss in a single degree of freedom spr... Accurate estimation of stiffness loss is a challenging problem in structural health monitoring.In this studyorthogonal wavelet decomposition is used for identifying the stiffness loss in a single degree of freedom spring-mass-dampersystem.The effects of excitation frequency on accuracy of damage detection is investigated.Results show that pseudo-aliaseffects caused by the orthogonal wavelet decomposition(OWD),affect damage detectability.It is demonstrated that theproposed approach is sunable for damage detection when the excitation frequency is relatively low.This study shows how apriori knowledge about the signal and ability to control the sampling frequency can enhance damage detectability. 展开更多
关键词 wavelet analysis damage detection structural health monitoring
在线阅读 下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:2
13
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
在线阅读 下载PDF
Feature Selection Using Tree Model and Classification Through Convolutional Neural Network for Structural Damage Detection 被引量:1
14
作者 Zihan Jin Jiqiao Zhang +3 位作者 Qianpeng He Silang Zhu Tianlong Ouyang Gongfa Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第3期498-518,共21页
Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree a... Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring. 展开更多
关键词 Feature selection structural damage detection Decision tree Random forest Convolutional neural network
原文传递
Structural Damage Detection with Damage InductionVector and Best Achievable Vector
15
作者 赵琪 周哲玮 《Advances in Manufacturing》 SCIE CAS 1997年第3期214-220,共7页
This paper presents a new method using the damage induction vector (DIV) and the best achievable vector (BAV) by which the change of modes due to structural damage can be applied to detcrnlinc the location and scale o... This paper presents a new method using the damage induction vector (DIV) and the best achievable vector (BAV) by which the change of modes due to structural damage can be applied to detcrnlinc the location and scale of damage in structures. By the DIV, undamagc elements can be castly identified and the damage detection can be limited to a few domains of the structure. The structural damage is located by conlputing the Euclidean distance betwcen the DIV and its BAV. The loss of both stiffness and mass properties can be located and quantified.The characteristic of this method is less calculation and there is no limitation of damage scale. Finally, the effectiveness of the method is demonstrated by detecting the damages of the shallow arches. 展开更多
关键词 structural damage detection mode analysis damage induction vector best achievablc vector
在线阅读 下载PDF
Structural Damage Detection Using a Modified Artificial Bee Colony Algorithm
16
作者 H.J.Xu Z.H.Ding +1 位作者 Z.R.Lu J.K.Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2016年第4期335-355,共21页
An optimization approach based on Artificial Bee Colony(ABC)algorithm is proposed for structural local damage detection in this study.The objective function for the damage identification problem is established by stru... An optimization approach based on Artificial Bee Colony(ABC)algorithm is proposed for structural local damage detection in this study.The objective function for the damage identification problem is established by structural parameters and modal assurance criteria(MAC).The ABC algorithm is presented to solve the certain objective function.Then the Tournament Selection Strategy and chaotic search mechanism is adopted to enhance global search ability of the certain algorithm.A coupled double-beam system is studied as numerical example to illustrate the correctness and efficiency of the propose method.The simulation results show that the modified ABC algorithm can identify the local damage of the structural system efficiently even under measurement noise,which demonstrates the proposed algorithm has a higher damage diagnosis precision. 展开更多
关键词 structural damage detection Artificial BEE COLONY algorithm Modal ASSURANCE Criteria coupled double-beam system TOURNAMENT Selection Strategy
在线阅读 下载PDF
A Structural Damage Detection Method Using XGBoost Algorithm on Natural Frequencies
17
作者 DONG Zhenyuan ZHANG Peng 《系统仿真技术》 2021年第3期210-215,共6页
Structural damage detection and monitoring are vital in product lifecycle management of aeronautic system in space utilization.In this paper,a method based on vibration characteristics and ensemble learning algorithm ... Structural damage detection and monitoring are vital in product lifecycle management of aeronautic system in space utilization.In this paper,a method based on vibration characteristics and ensemble learning algorithm is proposed to achieve damage detection.Based on the small volume of modal frequency data for intact and damage structures,the extreme gradient boosting algorithm enables robust damage localization under noise condition of wing-like structures on numerical data.The method shows satisfactory performance on localizing damage with random geometrical profiles in most cases. 展开更多
关键词 structural damage detection ensemble learning XGBoost natural frequencies
在线阅读 下载PDF
Application of ultrasonic CT method in nondestructive detection of interior defects in large scale concrete structural member of bridge
18
作者 Xiaopei ZHANG Jianhui QIU +2 位作者 Jianjun NIU Lizhi DU Xuege WANG 《Global Geology》 2008年第4期218-221,共4页
The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealcul... The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealculate the elastic wave velocity values in the section using the arrival times. Through analyzed the distribution Of elastic wave velocity in aim area, the information of the strength and the homogeneity of the investigated zone could be got indirectly. The authors introduced the operational principle of USCT and a practical case of using this method to detect the interior defects in large scale concrete structural member. Compared with other exploration methods, this method is more efficient and accurate. 展开更多
关键词 Ultrasonic CT concrete structural member nondestructive detection
在线阅读 下载PDF
Damage Detection of Composite Material Intelligent Structure with a New Photoelectric System 被引量:3
19
作者 俞晓磊 赵志敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第2期80-82,共3页
A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent st... A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent structure and it also can tell us the damage position in the structure. This system consists of two parts : software and hardware. Experiments of the damage detection and the analysis of the composite material structure with the photoelectric system were performed, and a series of damage detection experiments was conducted. The results prove that the performance of the system is well and the effects of the measure and test are evident. Through all the experiments, the damage detection technology and test system are approved to be real-time, effective and reliable in the damage detection of the composite intelligent structure. 展开更多
关键词 composite materials intelligent structure damage detection photoelectric system
在线阅读 下载PDF
Fault detection and accommodation via neural network and variable structure control 被引量:3
20
作者 Hao YANG Bin JIANG 《控制理论与应用(英文版)》 EI 2007年第3期253-260,共8页
This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) i... This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) is proposed for detecting serious faults, and variable structure (VS) model-following control is constructed for accommodating small faults. The proposed framework takes both advantages of qualitative way and quantitative way of fault detection and accommodation. Moreover, the uncertainty case is investigated and the VS controller is modified. Simulation results of a remotely piloted aircraft with control actuator failures illustrate the performance of the developed algorithm. 展开更多
关键词 Fault detection Fault accommodation Neural network Variable structure control
在线阅读 下载PDF
上一页 1 2 230 下一页 到第
使用帮助 返回顶部