Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface s...Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers.展开更多
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr...An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction.展开更多
The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aro...The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aromatic-rich oils.Molecular dynamics simulation was used to investigate the variations in pyrolysis behavior between PAH and NC-PAH based on the composition analysis.Through adjusting the content of NC-PAH,the influence of NC-PAH on the thermal stability of slurry oils(SOs)was evaluated by thermogravimetry,viscosity,coke value,and quinoline insoluble(QI).The morphology and structure of mesocarbon microbeads(MCMBs)prepared with SOs were measured by a polarized-light microscope,SEM,XRD,and Raman.Simulation results indicate that NC-PAH possesses much higher reactivity and tends to produce highly condensed solid and coke products.It corresponds to the QI and high viscosity in thermal stability experiments.Therefore,high concentrations of NC-PAH result in nonuniform morphology and disordered structures.In a system with low viscosity and few QIs,SO,which has a low nitrogen content(475 ppm),reacts gently to produce MCMBs with a uniform particle size(10-40μm)and an excellent spherical shape.As NC-PAH content decreases,the crystalline size of graphitization elevates,as evidenced by parallel layers(10.472-11.764)and stack height(3.269-3.701 nm).The graphitization degree becomes worse and nonuniform with the increase of the content of NC-PAH,and the best is 20.58%evaluated by Raman spectra area ratio(AG/Aall).Overall,this work suggests a nitrogen content reference and a controlling technology of nitrogen for the preparation of superior MCMB.展开更多
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraord...The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraordinarily weak birefringence at 170℃. Adding 30% PBS makes PVDF exhibit intrigued flower-like spherulitic morphology. The growth mechanism was explained by the decrease of the supercooling and the materials dissipation. Increasing the PBS content to 70% favors the formation of ring banded spherulites. Temperature dependent experiments verify the α→γ phase transition occurs from the junction sites of the ot and y crystals, while starts from the centers of α spherulites in the blends. Ring banded structures could be observed in neat PVDF, 70/30 blend and 30/70 blend when crystallized at 155℃, without γ crystals. The band period of PVDF α spherulites increases with crystallization temperature as well as the amount of PBS content. At 140℃, spherulites in neat PVDF lose their ring banded feature, while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.展开更多
A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The m...A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.展开更多
In recent years,regional integration of Chinese cities has gradually developed.Meanwhile,metropolitan areas and urban agglomerations have taken shape.On the one hand,the development of the metropolitan area has brough...In recent years,regional integration of Chinese cities has gradually developed.Meanwhile,metropolitan areas and urban agglomerations have taken shape.On the one hand,the development of the metropolitan area has brought about urban spatial expansion,as well as population and economic growth.On the other hand,it has led to problems such as the urban sprawl and suburbanization,increasing pressure on environmental resources,and the decline of urban central areas.Under this background,the Guangdong-Hong Kong-Macao Greater Bay Area Development Plan Outline proposes to accelerate the integration of Guangzhou-Foshan(Guang Fo)Metropolitan Coordinating Region(MCR),and to construct a networked space pattern driven by urban poles and shafts.Based on the academic research of Metropolitan Coordinating Region(MCR),as well as the theory of urban spatial structure and morphology,this study focus on urban spatial patterns and elements in different scales,from two individual cites(Guangzhou and Foshan),Guang Fo MCR,to Guangdong-Hong Kong-Macao(GHM)Greater Bay Area.With GIS and the mapping method,the spatial elements such as green space,water system,built-up area,road network,rail transit network and main pivot points of the Guang Fo MCR are classified,laid out individually and again overlaid in order to figure out the relationship of these elements.At the same time,through the comparative case study of the Randstad MCR in the Netherlands,the enlightenment of solving the development problem of MCR is hopefully to be obtained.As delta cities,the Guang Fo MCR is cut by the multi-channel water network,while the urban built-up area is concentrated in the middle of the MCR and spread out along the traffic corridor to the suburban district.The traffic structure of the Guang Fo MCR is characterized by the outward radiation of the central area of Guangzhou and Foshan.Simultaneously,the traffic connection between Guangzhou and Foshan is relatively weak.Compared with the polycentric spatial structure,which is called Decentralized Compact pattern of Randstad MCR,the Guang Fo MCR presents a city form with little hierarchy but homogeneity,and its urban space is disorderly spread.The bluegreen system of water and vegetation is fragmented because of the urban invasion in Guang Fo MCR,while the green heart in central Randstad is well preserved.As a result,it is well advised to explore a more resilient and ecological urban development in Guang Fo MCR.展开更多
In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-lik...In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.展开更多
The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different ...The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm^(2), 1 ×10^(13) ions/cm^(2) and 5 × 10^(13) ions/em^(2) at room temperature. The XRD analysis shows that the tetragonal phase of SnO_(2)NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine SnO_(2)NWs exhibit the chemical composition of SnO_(2)while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO_(2)is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO_(2)NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.展开更多
The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It ...The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blending ...展开更多
Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and ...Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.展开更多
In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The propertie...In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The properties of MS-SBR were investigated with respect to the morphology, mechanical properties, and dynamic viscoelasticity in comparison with those of the blends, natural rubber (NR)/star styrene-butadiene random rubber (S-SBR) blend rubber and cis-l,4-polybutadiene rubber (cis-BR)/S-SBR blend rubber. The samples were analyzed using transmission elec- tron microscopy (TEM), dynamic mechanical thermal analyzer (DMTA), and mechanical properties test. The analy- sis results show that MS-SBR possesses the desired combination of low rolling resistance and high antiskid resistance, and is promising for application in high performance tire tread.展开更多
The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron micros...The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron microscopy (SEM). It comes to the conclusions that the larger the crystallite size in the fibers is , the better the dyeable properties of the fibers are and there is a little compatibility between the dyeable agent and polypropylene resin. And the dye-uptake of the fibers may be up to 90% because the dyeable agent can uniformly be scattered in polypropylene.展开更多
The morphology of shear-oriented films of a thermotropic liquid crystalline polyester containing a triad ester mesogenic unit and a flexible spacer has been investigated in details. The formation conditions and proces...The morphology of shear-oriented films of a thermotropic liquid crystalline polyester containing a triad ester mesogenic unit and a flexible spacer has been investigated in details. The formation conditions and process, the fine structures and the relaxation process of mat structure in the oriented films have been observed and discussed.展开更多
The influence of additive Konjac Glucomannan (KGM) in a variety of con- centrations on the crystallization morphology and structure of calcium oxalate (CaOxa) has been investigated by infrared spectroscopy, scanni...The influence of additive Konjac Glucomannan (KGM) in a variety of con- centrations on the crystallization morphology and structure of calcium oxalate (CaOxa) has been investigated by infrared spectroscopy, scanning electron microscope, X-ray diffraction and so on. The results showed KGM can complex with the Ca^2+ ions; low concentration KGM prevents CaOxa from aggregating, raises the concentration of ions in the solution, reduces the quantity of crystals and inhibits their growth, and the crystals are round and blunt; while high concentration KGM promotes the growth of crystal, which appears in sheet-like or irregular shape. Only CaOxa monohydrate was observed in a certain system with or without the presence of KGM.展开更多
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ...By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.展开更多
Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of ...Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of the styrene in the solution. The (E-CE)C/PS multiphase polymer maintained both the crystalline structure of the (E-CE)C and the amorphous structure of the PS. In the multiphase polymer produced from the isotropic solution, however, the (E-CE)C formed spherulites and spread in the PS amorphous phase. While, in the multiphase polymer produced from the anisotropic solution, the (E-CE)formed cylinderic crystalline aggregates. Moreover, the ordered lamellar texture was also observed in the multiphase polymer produced from the anisotropic solution.展开更多
Phosphate-mineralization microbe was chosen to study the influences of bacterial mixture,filtrate,bacteria solution,bacterial body and bacterial secretion on barium hydrogen phosphate crystal formation.The chemical co...Phosphate-mineralization microbe was chosen to study the influences of bacterial mixture,filtrate,bacteria solution,bacterial body and bacterial secretion on barium hydrogen phosphate crystal formation.The chemical compositions and structures of samples were characterized with scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray diffraction techniques(XRD),revealing that the crystal morphology of barium hydrogen phosphate was dumbbell-shaped pattern,nanoparticles via aggregate clusters,irregular sphere with different sizes.The results indicated that bacterial body and bacterial secretion could induce the formation of irregular quadrilateral and spheres,respectively.But the effect of bacterial secretion was stronger than that of bacterial body when induced barium hydrogen phosphate crystal in bacteria solution.However,the crystals form could be affected only in bacterial mixture,but filtrate could induce the formation of nanoparticles.As a result,the bacteria and metabolites play an important role in the process of crystal nucleation,growth,and accumulation of barium hydrogen phosphate.展开更多
The growth of the microscopic fungi on the solid surface has a great influence on technical materials destruction. The aim of this study was to determine the influence of two strains of micromycetesPenicillium palitan...The growth of the microscopic fungi on the solid surface has a great influence on technical materials destruction. The aim of this study was to determine the influence of two strains of micromycetesPenicillium palitansstrain6 andArthrinium phaeospermumstrain 10 on morphological and structural properties of carbon steel surfaces in the nutrient medium. The difference in consumption of chlorine byP. palitans6(0.07 wt%) andA. phaeospermum10(0.04 wt%) and the difference in accumulation of a newly formed elementmanganese forP. palitans6(0.01 wt%) andA. phaeospermum10(0.03 wt%) has been observed. A relation between the surface and interface fungal stimulated processes, the biotic oxidation of steel surface as well as formation of the mixed oxides on the biomodified steel surface has been determined. The morphology of surfaces was characterized by scanning electron microscopy, the structure—by the X-ray diffraction method, Fourier transformation infrared and X-ray fluorescence spectroscopy.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
基金supported by the National Basic Research Program of China (No. 2011CB605602)
文摘Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers.
基金financially supported by the Joint Fund of Coal, set up by National Natural Science Foundation of China and Shenhua Co., Ltd.(U1261104)the National Natural Science Foundation of China (21276041)+3 种基金the Program for New Century Excellent Talents in University (NCET-12-0079)the Natural Science Foundation of Liaoning Province (2015020200)the Fundamental Research Funds for the Central Universities (DUT15LK41)the Science and Technology Development Program of Hangzhou (20130533B14)~~
文摘An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aromatic-rich oils.Molecular dynamics simulation was used to investigate the variations in pyrolysis behavior between PAH and NC-PAH based on the composition analysis.Through adjusting the content of NC-PAH,the influence of NC-PAH on the thermal stability of slurry oils(SOs)was evaluated by thermogravimetry,viscosity,coke value,and quinoline insoluble(QI).The morphology and structure of mesocarbon microbeads(MCMBs)prepared with SOs were measured by a polarized-light microscope,SEM,XRD,and Raman.Simulation results indicate that NC-PAH possesses much higher reactivity and tends to produce highly condensed solid and coke products.It corresponds to the QI and high viscosity in thermal stability experiments.Therefore,high concentrations of NC-PAH result in nonuniform morphology and disordered structures.In a system with low viscosity and few QIs,SO,which has a low nitrogen content(475 ppm),reacts gently to produce MCMBs with a uniform particle size(10-40μm)and an excellent spherical shape.As NC-PAH content decreases,the crystalline size of graphitization elevates,as evidenced by parallel layers(10.472-11.764)and stack height(3.269-3.701 nm).The graphitization degree becomes worse and nonuniform with the increase of the content of NC-PAH,and the best is 20.58%evaluated by Raman spectra area ratio(AG/Aall).Overall,this work suggests a nitrogen content reference and a controlling technology of nitrogen for the preparation of superior MCMB.
基金financially supported by the National Natural Science Foundations of China(No.20974011)the program of Introducing Talents of Discipline to Universities(No.B08003)
文摘The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions. It was found that neat PVDF forms large γform spherulites with extraordinarily weak birefringence at 170℃. Adding 30% PBS makes PVDF exhibit intrigued flower-like spherulitic morphology. The growth mechanism was explained by the decrease of the supercooling and the materials dissipation. Increasing the PBS content to 70% favors the formation of ring banded spherulites. Temperature dependent experiments verify the α→γ phase transition occurs from the junction sites of the ot and y crystals, while starts from the centers of α spherulites in the blends. Ring banded structures could be observed in neat PVDF, 70/30 blend and 30/70 blend when crystallized at 155℃, without γ crystals. The band period of PVDF α spherulites increases with crystallization temperature as well as the amount of PBS content. At 140℃, spherulites in neat PVDF lose their ring banded feature, while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.
基金supported by the National Natural Science Foundation
文摘A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.
基金the financial support given by National Natural Science Foundation Projects of International Cooperation and Exchange of China(No.51761135025)National Natural Science Foundation General Program of China(No.51778233)Science and Technology Program of Guangzhou,China(No.201707020041)
文摘In recent years,regional integration of Chinese cities has gradually developed.Meanwhile,metropolitan areas and urban agglomerations have taken shape.On the one hand,the development of the metropolitan area has brought about urban spatial expansion,as well as population and economic growth.On the other hand,it has led to problems such as the urban sprawl and suburbanization,increasing pressure on environmental resources,and the decline of urban central areas.Under this background,the Guangdong-Hong Kong-Macao Greater Bay Area Development Plan Outline proposes to accelerate the integration of Guangzhou-Foshan(Guang Fo)Metropolitan Coordinating Region(MCR),and to construct a networked space pattern driven by urban poles and shafts.Based on the academic research of Metropolitan Coordinating Region(MCR),as well as the theory of urban spatial structure and morphology,this study focus on urban spatial patterns and elements in different scales,from two individual cites(Guangzhou and Foshan),Guang Fo MCR,to Guangdong-Hong Kong-Macao(GHM)Greater Bay Area.With GIS and the mapping method,the spatial elements such as green space,water system,built-up area,road network,rail transit network and main pivot points of the Guang Fo MCR are classified,laid out individually and again overlaid in order to figure out the relationship of these elements.At the same time,through the comparative case study of the Randstad MCR in the Netherlands,the enlightenment of solving the development problem of MCR is hopefully to be obtained.As delta cities,the Guang Fo MCR is cut by the multi-channel water network,while the urban built-up area is concentrated in the middle of the MCR and spread out along the traffic corridor to the suburban district.The traffic structure of the Guang Fo MCR is characterized by the outward radiation of the central area of Guangzhou and Foshan.Simultaneously,the traffic connection between Guangzhou and Foshan is relatively weak.Compared with the polycentric spatial structure,which is called Decentralized Compact pattern of Randstad MCR,the Guang Fo MCR presents a city form with little hierarchy but homogeneity,and its urban space is disorderly spread.The bluegreen system of water and vegetation is fragmented because of the urban invasion in Guang Fo MCR,while the green heart in central Randstad is well preserved.As a result,it is well advised to explore a more resilient and ecological urban development in Guang Fo MCR.
基金The project was supported by the National Natural Science Foundation of China(NSFC,21703161).We thank Prof.Xingmao Jiang at Wuhan Institute of Technology for his assistance in collecting N2 adsorption-desorption isotherms data.
文摘In order to study the effect of catalysts’morphology on the electrochemical reduction of nitrogen gas,sample catalysts of NiO with four different morphologies(hollow spherical,sea urchin-shape,cubic block,and rod-like)were prepared.Characterization of the NiO catalysts was carried out using SEM,BET,XRD and electrochemical investigation techniques.The results indicated that the nitrogen reduction reaction(NRR)is strictly dependent on the morphology of the NiO catalysts,as the hollow spherical NiO showed the best electrochemical NRR performance of NH3 yield rate(3.21μg h^-1 mg^-1 cat.,4.1910^-11 mol cm^-2 s^-1)and Faradaic efficiency(1.37%),which was higher than the yields and efficiencies of the rod-NiO(1.8μg h^-1 mg^-1 cat.,3.2410^-11 mol cm^-2 s^-1,1.17%),sea urchin-NiO(1.66μg h^-1 mg^-1 cat.,2.4410^-11 mol cm^-2 s^-1,1.08%)and cubic block-NiO(1.32μg h^-1 mg^-1 cat.,2.1410^-11 mol cm^-2 s^-1,0.81%),respectively.These results match the order of the specific surface area of the NiO samples,with hollow spherical(113.91 m^2 g^-1)>rod-NiO(55.12 m^2 g^-1)sea urchin-NiO(55.29 m^2 g^-1)>cubic block-NiO(38.57 m^2 g^-1).This correlation can be attributed to the fact that large specific surface areas can provide more active sites for electrocatalysis.This work demonstrates the effect of the morphology of the NiO catalysts on its electrochemical NRR properties,which could offer some opportunity for the preparation of new electrode materials with improved electrocatalytic properties.
基金Supported by the Department of Physics,the University of AJKHigh Tech.Centralized Instrumentation Lab,the University of AJK,Pakistanthe Experimental Physics Division,and the National Center for Physics,Islamabad Pakistan
文摘The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm^(2), 1 ×10^(13) ions/cm^(2) and 5 × 10^(13) ions/em^(2) at room temperature. The XRD analysis shows that the tetragonal phase of SnO_(2)NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine SnO_(2)NWs exhibit the chemical composition of SnO_(2)while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO_(2)is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO_(2)NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
基金supported by Key Science Foundation of Education Ministry of China (No.207051)Key Lab Foundation of Anhui (No.2005383).
文摘The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blending ...
基金Supported by the RU Top-Down under Grant No 1001/CSS/870019
文摘Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.
基金Supported by National Natural Science Foundation of China (No.50573005)
文摘In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The properties of MS-SBR were investigated with respect to the morphology, mechanical properties, and dynamic viscoelasticity in comparison with those of the blends, natural rubber (NR)/star styrene-butadiene random rubber (S-SBR) blend rubber and cis-l,4-polybutadiene rubber (cis-BR)/S-SBR blend rubber. The samples were analyzed using transmission elec- tron microscopy (TEM), dynamic mechanical thermal analyzer (DMTA), and mechanical properties test. The analy- sis results show that MS-SBR possesses the desired combination of low rolling resistance and high antiskid resistance, and is promising for application in high performance tire tread.
文摘The crystallization properties and morphology structure of the cationic dyeable polypropylene fibers which were produced by the blending spinning method were studied by making use of X-ray and scanning electron microscopy (SEM). It comes to the conclusions that the larger the crystallite size in the fibers is , the better the dyeable properties of the fibers are and there is a little compatibility between the dyeable agent and polypropylene resin. And the dye-uptake of the fibers may be up to 90% because the dyeable agent can uniformly be scattered in polypropylene.
文摘The morphology of shear-oriented films of a thermotropic liquid crystalline polyester containing a triad ester mesogenic unit and a flexible spacer has been investigated in details. The formation conditions and process, the fine structures and the relaxation process of mat structure in the oriented films have been observed and discussed.
基金Supported by the National Natural Science Foundation of China (31071518 and 31271837)the doctoral program of higher education of the specialized research fund for the project funded by the United (20113515110010)+2 种基金Science and Technology Planning Project of technological department (2012GA7200022)the Natural Science Foundation of Fujian Province (2011J01285)the funding (type A, No. JA11167) from the Fujian Education Department
文摘The influence of additive Konjac Glucomannan (KGM) in a variety of con- centrations on the crystallization morphology and structure of calcium oxalate (CaOxa) has been investigated by infrared spectroscopy, scanning electron microscope, X-ray diffraction and so on. The results showed KGM can complex with the Ca^2+ ions; low concentration KGM prevents CaOxa from aggregating, raises the concentration of ions in the solution, reduces the quantity of crystals and inhibits their growth, and the crystals are round and blunt; while high concentration KGM promotes the growth of crystal, which appears in sheet-like or irregular shape. Only CaOxa monohydrate was observed in a certain system with or without the presence of KGM.
文摘By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.
基金This work was supported by the Chinese Academy of Sciences and the Science Fund of the Guangdong Committee of Science and Technology.
文摘Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of the styrene in the solution. The (E-CE)C/PS multiphase polymer maintained both the crystalline structure of the (E-CE)C and the amorphous structure of the PS. In the multiphase polymer produced from the isotropic solution, however, the (E-CE)C formed spherulites and spread in the PS amorphous phase. While, in the multiphase polymer produced from the anisotropic solution, the (E-CE)formed cylinderic crystalline aggregates. Moreover, the ordered lamellar texture was also observed in the multiphase polymer produced from the anisotropic solution.
基金Funded by the National Natural Science Foundation of China(Nos.5137203851178104)+1 种基金Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1453)333 Project of Jiangsu Province
文摘Phosphate-mineralization microbe was chosen to study the influences of bacterial mixture,filtrate,bacteria solution,bacterial body and bacterial secretion on barium hydrogen phosphate crystal formation.The chemical compositions and structures of samples were characterized with scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray diffraction techniques(XRD),revealing that the crystal morphology of barium hydrogen phosphate was dumbbell-shaped pattern,nanoparticles via aggregate clusters,irregular sphere with different sizes.The results indicated that bacterial body and bacterial secretion could induce the formation of irregular quadrilateral and spheres,respectively.But the effect of bacterial secretion was stronger than that of bacterial body when induced barium hydrogen phosphate crystal in bacteria solution.However,the crystals form could be affected only in bacterial mixture,but filtrate could induce the formation of nanoparticles.As a result,the bacteria and metabolites play an important role in the process of crystal nucleation,growth,and accumulation of barium hydrogen phosphate.
文摘The growth of the microscopic fungi on the solid surface has a great influence on technical materials destruction. The aim of this study was to determine the influence of two strains of micromycetesPenicillium palitansstrain6 andArthrinium phaeospermumstrain 10 on morphological and structural properties of carbon steel surfaces in the nutrient medium. The difference in consumption of chlorine byP. palitans6(0.07 wt%) andA. phaeospermum10(0.04 wt%) and the difference in accumulation of a newly formed elementmanganese forP. palitans6(0.01 wt%) andA. phaeospermum10(0.03 wt%) has been observed. A relation between the surface and interface fungal stimulated processes, the biotic oxidation of steel surface as well as formation of the mixed oxides on the biomodified steel surface has been determined. The morphology of surfaces was characterized by scanning electron microscopy, the structure—by the X-ray diffraction method, Fourier transformation infrared and X-ray fluorescence spectroscopy.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).