期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Robustness-oriented optimal sensor placement for structural monitoring considering sensor failures
1
作者 ZHOU Guangdong LONG Wei +2 位作者 SHEN Anbin ZHANG Jianing YANG Jiayi 《Journal of Southeast University(English Edition)》 2025年第3期286-294,共9页
Conventional optimal sensor placement(OSP)methods employ the premise that all sensors work perfectly during long-term structural monitoring.However,this premise is often difficult to fulfill in real applications due t... Conventional optimal sensor placement(OSP)methods employ the premise that all sensors work perfectly during long-term structural monitoring.However,this premise is often difficult to fulfill in real applications due to poor manufacturing and material aging of sensors,human damage,and electromagnetic interference.This paper presents a robustness-oriented OSP method that considers sensor failures.The OSP problem is designed with consideration of sensor failures to ensure that both complete vibration data collected by all sensors and incomplete vibration data caused by individual sensor failures can accurately identify structural modal parameters.A dispersion-aggregation firefly algorithm(DAFA),which is derived from the basic firefly algorithm,has been proposed to solve this complicated optimization problem.The dispersion and aggregation operators are designed to prevent falling into local optima and to rapidly converge to the global optima.The proposed methodology is confirmed by extracting the robust sensor configuration for a long-span cable-stayed bridge.The robustness of the optimal sensor configurations against sensor failure is thoroughly explored,and the performance of the proposed DAFA is extensively examined. 展开更多
关键词 structural health monitoring(SHM) optimal sensor placement(OSP) long-span bridges modal param-eter identification firefly algorithm
在线阅读 下载PDF
Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan 被引量:13
2
作者 Yozo Fujino Dionysius MSiringoringo +2 位作者 Yoshiki Ikeda Tomonori Nagayama Tsukasa Mizutani 《Engineering》 SCIE EI 2019年第6期1093-1119,共27页
This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures us... This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan. 展开更多
关键词 structural monitoring Long-span bridge High-rise building Seismic monitoring Wind-induced responses Pavement and slab monitoring structural control monitoring structural assessment
在线阅读 下载PDF
Fast Tool for Structural Monitoring of a Pier After Impact of a Very Large Vessel Using Ambient Vibration Analysis
3
作者 Thiago Henrique Walnorio Ferreira Cláudio Martins 《Journal of Marine Science and Application》 CSCD 2021年第2期317-324,共8页
Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no ... Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no need to interrupt its use.The present work aims to develop a numerical model to represent the global structural behavior of a vessel breasting dolphin using a technique that is simple and cheap in order to obtain a fast answer about the stiffness of a pier after the collision of ships with capacity up to 400,000 t.To determine the modes of vibration,one accelerometer was installed on the breasting dolphin located on the pier and a frequency domain technic was conducted over recorded data to obtain modal parameters of the structure.In situ measurements were compared to data from a finite element model based on the original structural design in order to adapt the model to accurately represent the actual behavior of the system.This allowed a reliable structural analysis that accounted for existing structural damage and imperfections.The results of the experiment presented herein are the numerical characterization of the structure,along with the structural analysis to assess the degree of damage currently observed on the system.It is noted that the dolphin subjected to ship impacts presents a reduction in stiffness of approximately10%and its global damage level can be monitored from now after new accidents. 展开更多
关键词 structural health monitoring Ambient vibration analysis Natural frequency Dynamics of structures Marine structures
在线阅读 下载PDF
Guided Wave Based Composite Structural Fatigue Damage Monitoring Utilizing the WOA-BP Neural Network
4
作者 Borui Wang Dongyue Gao +2 位作者 Haiyang Gu Mengke Ding Zhanjun Wu 《Computers, Materials & Continua》 2025年第4期455-473,共19页
Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approac... Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage. 展开更多
关键词 structural health monitoring ultrasonic guided wave composite structural fatigue damage monitoring WOA-BP neural network relief-F algorithm
在线阅读 下载PDF
Acceleration Response Reconstruction for Structural Health Monitoring Based on Fully Convolutional Networks
5
作者 Wenda Ma Qizhi Tang +2 位作者 Huang Lei Longfei Chang Chen Wang 《Structural Durability & Health Monitoring》 2025年第5期1265-1286,共22页
Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration response... Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios. 展开更多
关键词 structural health monitoring acceleration response reconstruction fully convolutional network experimental validation large-scale structural application
在线阅读 下载PDF
An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading
6
作者 Wael A.Altabey 《Structural Durability & Health Monitoring》 2025年第5期1145-1165,共21页
In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a d... In the fabrication and monitoring of parts in composite structures,which are being used more and more in a variety of engineering applications,the prediction and fatigue failure detection in composite materials is a difficult problem.This difficulty arises from several factors,such as the lack of a comprehensive investigation of the fatigue failure phenomena,the lack of a well-defined fatigue damage theory used for fatigue damage prediction,and the inhomogeneity of composites because of their multiple internal borders.This study investigates the fatigue behavior of carbon fiber reinforced with epoxy(CFRE)laminated composite plates under spectrum loading utilizing a uniqueDeep LearningNetwork consisting of a convolutional neural network(CNN).Themethod includes establishing Finite Element Model(FEM)in a plate model under a spectrum fatigue loading.Then,a CNN is trained for fatigue behavior prediction.The training phase produces promising results,showing the model’s performance with 94.21%accuracy,92.63%regression,and 91.55%F-score.To evaluate the model’s reliability,a comparison is made between fatigue data from the CNN and the FEM.It was found that the error band for this comparison is less than 0.3878MPa,affirming the accuracy and reliability of the proposed technique.The proposed method results converge with available experimental results in the literature,thus,the study suggests the broad applicability of this method to other different composite structures. 展开更多
关键词 Deep learning structural health monitoring(SHM) CFRE convolutional neural network(CNN) spectrum fatigue loading composite plates
在线阅读 下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:2
7
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
在线阅读 下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions 被引量:1
8
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
原文传递
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:1
9
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 structural Health monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element Method(FEM)
在线阅读 下载PDF
Review and Prospect of Research on Structural Health Monitoring Technology for Bridges 被引量:1
10
作者 Guoyi Liu 《Journal of Architectural Research and Development》 2024年第3期156-161,共6页
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a... As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges. 展开更多
关键词 Bridge structural health monitoring Safe operation monitoring technology
在线阅读 下载PDF
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
11
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
在线阅读 下载PDF
Fast and robust strain signal processing for aircraft structural health monitoring
12
作者 Cong Wang Xin Tan +1 位作者 Xiaobin Ren Xuelong Li 《Journal of Automation and Intelligence》 2024年第3期160-168,共9页
This work elaborates a fast and robust structural health monitoring scheme for copying with aircraft structural fatigue.The type of noise in structural strain signals is determined by using a statistical analysis meth... This work elaborates a fast and robust structural health monitoring scheme for copying with aircraft structural fatigue.The type of noise in structural strain signals is determined by using a statistical analysis method,which can be regarded as a mixture of Gaussian-like(tiny hairy signals)and impulse-like noise(single signals with anomalous movements in peak and valley areas).Based on this,a least squares filtering method is employed to preprocess strain signals.To precisely eliminate noise or outliers in strain signals,we propose a novel variational model to generate step signals instead of strain ones.Expert judgments are employed to classify the generated signals.Based on the classification labels,whether the aircraft is structurally healthy is accurately judged.By taking the generated step count vectors and labels as an input,a discriminative neural network is proposed to realize automatic signal discrimination.The network output means whether the aircraft structure is healthy or not.Experimental results demonstrate that the proposed scheme is effective and efficient,as well as achieves more satisfactory results than other peers. 展开更多
关键词 structural health monitoring Signal processing Abnormal judgment Noise analysis Total variation
在线阅读 下载PDF
Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages
13
作者 Giada Faraco Andrea Vincenzo De Nunzio +1 位作者 Nicola Ivan Giannoccaro Arcangelo Messina 《Structural Durability & Health Monitoring》 EI 2024年第6期739-762,共24页
The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a g... The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure. 展开更多
关键词 structural health monitoring damage detection vibration measurements stochastic subspace identification
在线阅读 下载PDF
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
14
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Spatial monitoring of curved geostructures using distributed Brillouin sensing:A state-of-the-art review
15
作者 Shaoqiu Zhang Chao Wang +2 位作者 Cleitus Antony Qinglai Zhang Zili Li 《Intelligent Geoengineering》 2025年第1期35-53,共19页
Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their se... Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper. 展开更多
关键词 Distributed Brillouin sensing structural health monitoring Distributed fibre optic sensing Curved geostructures Field instrumentation
在线阅读 下载PDF
A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring
16
作者 Guangfei Jia Jinqiu Yang Hanwen Liang 《Structural Durability & Health Monitoring》 2025年第4期1057-1072,共16页
Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key inno... Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key innovation of this method lies in the optimization of VMD parameters K and α using the improved Horned Lizard Optimization Algorithm(IHLOA).An inertia weight parameter is introduced into the random walk strategy of HLOA,and the related formula is improved.The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions(IMFs),and the high-noise IMFs are identified based on a correlation coefficient-variance method.Further noise reduction is achieved using wavelet thresholding.The proposed method is validated using simulated signals and experimental signals,and simulation results indicate that the proposed method surpasses original VMD,Empirical Mode Decomposition(EMD),and wavelet thresholding in terms of Signal-to-Noise Ratio(SNR)and Root Mean Square Error(RMSE),and experimental results indicate that the proposedmethod can effectively remove noise in terms of three evaluationmetrics.Furthermore,comparedwith FeatureModeDecomposition(FMD)andMultichannel Singular Spectrum Analysis(MSSA),this method has a better envelope spectrum.This method not only provides a solution for noise reduction in signal processing but also holds significant potential for applications in structural health monitoring and fault diagnosis. 展开更多
关键词 Improve horned lizard optimization algorithm variational mode decomposition wavelet threshold inertial weight secondary noise reduction structural health monitoring
在线阅读 下载PDF
Integration of on-board monitoring data into infrastructure management for effective decision-making in railway maintenance
17
作者 Tzu-Hao Yan Cyprien Hoelzl +2 位作者 Francesco Corman Vasilis Dertimanis Eleni Chatzi 《Railway Engineering Science》 2025年第2期151-168,共18页
Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require t... Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require timely information regarding the current(diagnosis)and future(prognosis)condition of their assets to make informed decisions on maintenance and renewal actions.In recent years,in-service vehicles equipped with on-board monitoring(OBM)measuring devices,such as accelerometers,have been introduced on railroad networks,traversing the network almost daily.This article explores the application of state-of-the-art OBM-based track quality indicators for railway infrastructure condition assessment and prediction,primarily under the prism of track geometry quality.The results highlight the similarities and advantages of applying track quality indicators generated from OBM measurements(high frequency and relatively lower accuracy data)compared to those generated from higher precision,yet temporally sparser,data collected by traditional track recording vehicles(TRVs)for infrastructure management purposes.The findings demonstrate the performance of the two approaches,further revealing the value of OBM information for monitoring the track status degradation process.This work makes a case for the advantageous use of OBM data for railway infrastructure management,and attempts to aid understanding in the application of OBM techniques for engineers and operators. 展开更多
关键词 On-board monitoring structural health monitoring Railway systems and dynamics Predictive maintenance
在线阅读 下载PDF
Operational modal identification of suspension bridge based on structural health monitoring system 被引量:7
18
作者 李枝军 李爱群 韩晓林 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期104-107,共4页
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method... An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements. 展开更多
关键词 suspension bridge operational modal identification structural health monitoring system ambient vibration test
在线阅读 下载PDF
Design and Experiment of PZT Network-based Structural Health Monitoring Scanning System 被引量:25
19
作者 Qiu Lei Yuan Shenfang Wang Qiang Sun Yajie Yang Weiwei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第5期505-512,共8页
The active Lamb wave and piezoelectric transducer (PZT)-based structural health monitoring (SHM) technology is a kind of efficient approach to estimate the health state of aircraft structure. In practical applicat... The active Lamb wave and piezoelectric transducer (PZT)-based structural health monitoring (SHM) technology is a kind of efficient approach to estimate the health state of aircraft structure. In practical applications, PZT networks are needed to monitor large scale structures. Scanning many of the different PZT actuator-sensor channels within these PZT networks to achieve on-line SHM task is important. Based on a peripheral component interconnect extensions for instrumentation (PXI) platform, an active Lamb wave and PZT network-based integrated multi-channel scanning system (PXI-ISS) is developed for the purpose of practical applications of SHM, which is compact and portable, and can scan large numbers of actuator-sensor channels and perform damage assessing automatically. A PXI-based 4 channels gain-programmable charge amplifier, an external scanning module with 276 actuator-sensor channels and integrated SHM software are proposed and discussed in detail. The experimental research on a carbon fiber composite wing box of an unmanned aerial vehicle (UAV) for verifying the functions of the PXI-ISS is mainly discussed, including the design of PZTs layer, the method of excitation frequency selection, functional test of damage imaging, stability test of the PXI-ISS, and the loading effect on signals. The experimental results have verified the stability and damage functions of this system. 展开更多
关键词 structural health monitoring active Lamb wave piezoelectric transducer network multi-channel scanning system damage detection
原文传递
Strain transfer of surface-bonded fiber Bragg grating sensors for airship envelope structural health monitoring 被引量:19
20
作者 Hai-tao ZHAO Quan-bao WANG +3 位作者 Ye QIU Ji-an CHEN Yue-ying WANG Zhen-min FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第7期538-545,共8页
This paper deals with an improved bonding approach of surface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory. A theoretical formula is... This paper deals with an improved bonding approach of surface-bonded fiber Bragg grating (FBG) sensors for airship envelope structural health monitoring (SHM) under the strain transfer theory. A theoretical formula is derived from the proposed model to predict the strain transfer relationship between the airship envelope and fiber core. Then theoretical predictions are validated by numerical analysis using the finite element method (FEM). Finally, on the basis of the theoretical approach and numerical validation, parameters that influence the strain transfer rate from the airship envelope to fiber core and the ratio of effective sensing length are analyzed, and some meaningful conclusions are provided. 展开更多
关键词 Airship envelope Fiber Bragg grating (FBG) Surface-bonded Strain transfer structural health monitoring (SHM)
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部