Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w...Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis.展开更多
Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have exp...Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have explored the consistency between functional and structural connectivity networks in svMCI.Here,we constructed such networks using resting-state f MRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls.The functional networks were then parcellated into topological modules,corresponding to several well-defined functional domains.The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level(whole brain and modular level).We found no significant intergroup differences in the functional–structural coupling within the whole brain;however,there was significantly increased functional–structural coupling within the dorsal attention module and decreased functional–structural coupling within the ventral attention module in the svMCI group.In addition,the svMCI patients demonstrated decreased intramodular connectivity strength in the visual,somatomotor,and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network,mainly linking the visual,somatomotor,dorsal attention,ventral attention,and frontoparietal control modules.There was no significant correlation between the altered module-level functional–structural coupling and cognitive performance in patients with svMCI.These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a...The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is展开更多
In this paper,the proton structure function F_(2)^(p)(x,Q^(2))at small-x is investigated using an analytical solution to the Balitsky–Kovchegov(BK)equation.In the context of the color dipole description of deep inela...In this paper,the proton structure function F_(2)^(p)(x,Q^(2))at small-x is investigated using an analytical solution to the Balitsky–Kovchegov(BK)equation.In the context of the color dipole description of deep inelastic scattering(DIS),the structure function F_(2)^(p)(x,Q^(2))is computed by applying the analytical expression for the scattering amplitude N(k,Y)derived from the BK solution.At transverse momentum k and total rapidity Y,the scattering amplitude N(k,Y)represents the propagation of the quark-antiquark dipole in the color dipole description of DIS.Using the BK solution we extracted the integrated gluon density xg(x,Q^(2))and then compared our theoretical estimation with the LHAPDF global data fits,NNPDF3.1sx and CT18.Finally,we have investigated the behavior of F_(2)^(p)(x,Q^(2))in the kinematic region of 10^(-5)≤x≤10^(-2)and 2.5 GeV^(2)≤Q^(2)≤60 GeV^(2).Our predicted results for F_(2)^(p)(x,Q^(2))within the specified kinematic region are in good agreement with the recent high-precision data for F_(2)^(p)(x,Q^(2))from HERA(H1 Collaboration)and the LHAPDF global parametrization group NNPDF3.1sx.展开更多
Starting with introduction of basic concept of optical coherence tomography(OCT) techniques,this paper focuses on a detailed review of ophthalmic OCT instruments and their clinical applications. As one of the most imp...Starting with introduction of basic concept of optical coherence tomography(OCT) techniques,this paper focuses on a detailed review of ophthalmic OCT instruments and their clinical applications. As one of the most important inventions of ophthalmology instruments,OCT has become a standard imaging tool for daily ophthalmic diagnosis. The imaging capability has been significantly improved during the past ~ 30 years. In this article,several representing systems which have made significant contributions to OCT developments will be reviewed in details. For each system,the system configuration will be discussed first,follow ed by a brief introduction of their clinical applications. The review concludes with discussions on potential directions of OCT developments and expectations for further improvements of OCT imaging capabilities.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
[Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,t...[Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,the technical parameters for preparing dietary fiber by steam explosion were studied,and the functional and structural characteristics of DF before and after modification were discussed.[Results]The optimum conditions for extracting DF from oat bran by SE modification were steam explosion pressure of 0.6 MPa and holding time of 4 min.The extraction rate of DF reached 33.9%.The solubility,water holding capacity,oil holding capacity and swelling force of Control-DF were 78.35%,2.25 g/g,1.55 g/g and 3.05 ml/g,respectively,and those of SE-DF were 95.69%,3.28 g/g,2.18 g/g and 5.98 ml/g,respectively.After SE treatment,the scavenging rates of oat bran DF on DPPH,ABTS,O-2·and·OH were significantly higher than those of untreated samples.The scavenging ability on free radicals was enhanced.The scavenging rates of Control-DF on DPPH,ABTS,O-2·and·OH were 43.72%,50.26%,31.02%and 39.25%,respectively,and those of SE-DF were 70.25%,73.21%and 63.69%59.32%,respectively.The surface of modified DF showed an obvious honeycomb structure.[Conclusions]This study can provide reference for functional modifications and utilization of dietary fiber from oat bran.展开更多
The structural and functional connectomes interact and depend on each other to jointly maintain the functioning of the brain and further support cognitive processing.Elucidating the complex interplay between the struc...The structural and functional connectomes interact and depend on each other to jointly maintain the functioning of the brain and further support cognitive processing.Elucidating the complex interplay between the structural connectome(SC)and functional connectome(FC)is one of the central challenges in network neuroscience.While previous studies have consistently reported SC-FC coupling or SC constraints on FC[1],[2],[3],they typically analyzed these networks in isolation.展开更多
Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties bet...Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties between bipolar depression(BD)patients with and without obsessive-compulsive symptoms(OCS).Methods A total of 90 BD patients(27 males,63 females;median age 19.0(22.0,25.0)years)were recruited from the psychiatric outpatient and inpatient departments of the First Affiliated Hospital of Jinan University between March 2018 and December 2022.Fifty healthy controls(19 males,31 females;median age:23.0(20.0,27.0)years)were also enrolled.The BD patients were divided into two groups based on the presence of OCS:53 with OCS(OCS group)and 37 without OCS(NOCS group).Resting-state structural and functional MRI data were collected for all participants to construct gray matter structural and functional networks.Graph therory analysis was aapplied to calculate network topological metrics such as small-world properties.The structural and functional network topological properties were compared among the BD-OCS,BD-nOCS,and control groups.Partial correlation analysis was conducted to examine the association between network topological metrics with significant group differences and Yale-Brown Obsessive-Compulsive Scale(Y-BOCS)scores.Support vector machines(SVM)were used with these metrics as classificationfeaturevalues toimproveediagnostic accuracy through pairwise group classification.Results Structural network analysis of gray matter:compared to HC group,both OCS group and NOCS group showed increasedshortesttpathlengthand standardized characteristic path length(shortest path length:0.78 and 0.80 vs.0.69;normalized characteristic path length:0.48 and 0.49 vs.0.43),and decreased global efficiency(0.21 and 0.21 vs.0.24)compared to the HC group(permutation test,all P<0.05).Compared to NOCS and HC groups,the OCS group showed increased nodal centrality and betweenness centrality in the right rolandic operculum and left superior occipital gyrus(permutation test,all P<0.05).Functional network analysis of gray matter:compared to the NOCS group,the OCS group showed increased node efficiency and decreased betweenness centrality in the cerebellum(t=2.15,-3.04;all P<0.05);compared to HC groups,the OCS group showed decreased betweenness centrality in the cerebellum and left inferior frontal gyrus,along with increased node centrality and nodal efficiency in the right transverse temporal gyrus(t=-2.99,-3.61,3.06,3.10;all P<0.05).In the 0CS group,betweenness centrality in the left inferior frontal gyrus positively correlated with Y-BOCS scale obsessive thinking score(r=0.303,P=0.034).Nodal centrality and node efficiency of the right transverse temporal gyrus negatively correlated with Y-BOCS total score(r=-0.301,-0.311)and Y-BOCS obsessional thinking scores(r=-0.385,-0.380)separately(all P<0.05).SVM classification:the combined network features achieved an area under the curve of 0.80 in distinguising OCS from NOCS patients.Conclusion BDOCS and BD-nOCS patients both exhibit consistent changes in gray matter structural network topology,with theOCSSgroup displaying more pronounced nodal topological abnormalities.Multi-network feature integration demostrates potential for diagnostic classfication.展开更多
Hypoxic pulmonary hypertension(HPH)is a pathophysiological state characterized by diverse clinical symptoms resulting from structural and functional changes in pulmonary vessels induced by hypoxic stimuli,leading to i...Hypoxic pulmonary hypertension(HPH)is a pathophysiological state characterized by diverse clinical symptoms resulting from structural and functional changes in pulmonary vessels induced by hypoxic stimuli,leading to increased pulmonary artery pressure.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
Neuron glia antigen-2(NG2)glia,also known as oligodendrocyte precursor cells(OPCs),are essential for maintaining the normal function and structure of the central nervous system(CNS)due to their supportive role[1].Unde...Neuron glia antigen-2(NG2)glia,also known as oligodendrocyte precursor cells(OPCs),are essential for maintaining the normal function and structure of the central nervous system(CNS)due to their supportive role[1].Under physiological conditions,NG2 glia are involved in myelination by differentiating into oligodendrocytes,which are responsible for forming the myelin sheath around axons[2].In addition,the NG2 glia can directly influence the activity of neuronal circuits by receiving synaptic input from neurons and generating action potentials[3].Under pathological conditions,such as in response to injury or disease,the NG2 glia proliferate and differentiate to replace damaged oligodendrocytes,contributing to the repair and regeneration of myelin[4].展开更多
Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one ...Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one direction S-rough sets (function one direction singular rough sets) and function two direction S-rough sets (function two direction singular rough sets). This paper advances the relationship theorem of function S-rough sets and S-rough sets. Function S-rough sets is the general form of S-rough sets, and S-rough sets is the special ease of function S-rough sets. In this paper, applications of function S-rough sets in rough law mining-discovery of system are given. Function S-rough sets is a new research direction of rough sets and rough system.展开更多
Function S-rough sets (function singular rough sets) is defined on a -function equivalence class [u]. Function S-rough sets is the extension form of S-rough sets. By using the function S-rough sets, this paper gives...Function S-rough sets (function singular rough sets) is defined on a -function equivalence class [u]. Function S-rough sets is the extension form of S-rough sets. By using the function S-rough sets, this paper gives rough law generation model of a-function equivalence class, discussion on law mining and law discovery in systems, and application of law mining and law discovery in communication system. Function S-rough sets is a new theory and method in law mining research.展开更多
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heat...The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.展开更多
Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly compose...Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly composed of very long-chain fatty acids(VLCFAs);their derivatives,including esters,primary alcohols,secondary alcohols,aldehydes,and ketones;and triterpenoids.This complex mixture of lipids is probably biosynthesized in the epidermal cells of most plants and exuded onto the surface.Cuticular wax not only makes the fruit less susceptible to microbial infection but also reduces mechanical damage to the fruit,thereby maintaining the fruit’s commodity value.To date,research has mostly focused on the changes,function,and regulation of fruit wax before harvest,while ignoring the changes and functions of wax in fruit storage.This paper reviews on the composition,structure,and metabolic regulation of cuticular wax in fruits.It also focuses on postharvest factors affecting wax composition,such as storage temperature,relative humidity(RH),gas atmosphere,and as exogenous hormones;and the effects of wax on fruit postharvest quality,including water dispersion,fruit softening,physiological disorders,and disease resistance.These summaries may be of assistance in better understanding the changes in cuticular wax in postharvest fruit and the resulting effects on fruit quality.展开更多
The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used ...The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.展开更多
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金supported by the National Natural Science Foundation of China(Nos.52072127,52201297,U21A2055,and U22A20160)the China Postdoctoral Science Foundation(No.2022M711200)the Royal Society(No.IEC/NSFC/191344)(UK).
文摘Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis.
基金supported by the Natural Science Foundation of Tianjin Municipal Science and Technology Commission(18JCQNJC10900)Tianjin Natural Science Foundation(17JCZDJC36300)。
文摘Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have explored the consistency between functional and structural connectivity networks in svMCI.Here,we constructed such networks using resting-state f MRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls.The functional networks were then parcellated into topological modules,corresponding to several well-defined functional domains.The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level(whole brain and modular level).We found no significant intergroup differences in the functional–structural coupling within the whole brain;however,there was significantly increased functional–structural coupling within the dorsal attention module and decreased functional–structural coupling within the ventral attention module in the svMCI group.In addition,the svMCI patients demonstrated decreased intramodular connectivity strength in the visual,somatomotor,and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network,mainly linking the visual,somatomotor,dorsal attention,ventral attention,and frontoparietal control modules.There was no significant correlation between the altered module-level functional–structural coupling and cognitive performance in patients with svMCI.These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274030 and 11474281
文摘The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is
文摘In this paper,the proton structure function F_(2)^(p)(x,Q^(2))at small-x is investigated using an analytical solution to the Balitsky–Kovchegov(BK)equation.In the context of the color dipole description of deep inelastic scattering(DIS),the structure function F_(2)^(p)(x,Q^(2))is computed by applying the analytical expression for the scattering amplitude N(k,Y)derived from the BK solution.At transverse momentum k and total rapidity Y,the scattering amplitude N(k,Y)represents the propagation of the quark-antiquark dipole in the color dipole description of DIS.Using the BK solution we extracted the integrated gluon density xg(x,Q^(2))and then compared our theoretical estimation with the LHAPDF global data fits,NNPDF3.1sx and CT18.Finally,we have investigated the behavior of F_(2)^(p)(x,Q^(2))in the kinematic region of 10^(-5)≤x≤10^(-2)and 2.5 GeV^(2)≤Q^(2)≤60 GeV^(2).Our predicted results for F_(2)^(p)(x,Q^(2))within the specified kinematic region are in good agreement with the recent high-precision data for F_(2)^(p)(x,Q^(2))from HERA(H1 Collaboration)and the LHAPDF global parametrization group NNPDF3.1sx.
文摘Starting with introduction of basic concept of optical coherence tomography(OCT) techniques,this paper focuses on a detailed review of ophthalmic OCT instruments and their clinical applications. As one of the most important inventions of ophthalmology instruments,OCT has become a standard imaging tool for daily ophthalmic diagnosis. The imaging capability has been significantly improved during the past ~ 30 years. In this article,several representing systems which have made significant contributions to OCT developments will be reviewed in details. For each system,the system configuration will be discussed first,follow ed by a brief introduction of their clinical applications. The review concludes with discussions on potential directions of OCT developments and expectations for further improvements of OCT imaging capabilities.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
文摘[Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,the technical parameters for preparing dietary fiber by steam explosion were studied,and the functional and structural characteristics of DF before and after modification were discussed.[Results]The optimum conditions for extracting DF from oat bran by SE modification were steam explosion pressure of 0.6 MPa and holding time of 4 min.The extraction rate of DF reached 33.9%.The solubility,water holding capacity,oil holding capacity and swelling force of Control-DF were 78.35%,2.25 g/g,1.55 g/g and 3.05 ml/g,respectively,and those of SE-DF were 95.69%,3.28 g/g,2.18 g/g and 5.98 ml/g,respectively.After SE treatment,the scavenging rates of oat bran DF on DPPH,ABTS,O-2·and·OH were significantly higher than those of untreated samples.The scavenging ability on free radicals was enhanced.The scavenging rates of Control-DF on DPPH,ABTS,O-2·and·OH were 43.72%,50.26%,31.02%and 39.25%,respectively,and those of SE-DF were 70.25%,73.21%and 63.69%59.32%,respectively.The surface of modified DF showed an obvious honeycomb structure.[Conclusions]This study can provide reference for functional modifications and utilization of dietary fiber from oat bran.
基金supported by the National Natural Science Foundation of China(82021004,82327807,and T24B2012)the Beijing Natural Science Foundation(JQ23033)the Fundamental Research Funds for the Central Universities(2233100018 and 2233300002).
文摘The structural and functional connectomes interact and depend on each other to jointly maintain the functioning of the brain and further support cognitive processing.Elucidating the complex interplay between the structural connectome(SC)and functional connectome(FC)is one of the central challenges in network neuroscience.While previous studies have consistently reported SC-FC coupling or SC constraints on FC[1],[2],[3],they typically analyzed these networks in isolation.
文摘Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties between bipolar depression(BD)patients with and without obsessive-compulsive symptoms(OCS).Methods A total of 90 BD patients(27 males,63 females;median age 19.0(22.0,25.0)years)were recruited from the psychiatric outpatient and inpatient departments of the First Affiliated Hospital of Jinan University between March 2018 and December 2022.Fifty healthy controls(19 males,31 females;median age:23.0(20.0,27.0)years)were also enrolled.The BD patients were divided into two groups based on the presence of OCS:53 with OCS(OCS group)and 37 without OCS(NOCS group).Resting-state structural and functional MRI data were collected for all participants to construct gray matter structural and functional networks.Graph therory analysis was aapplied to calculate network topological metrics such as small-world properties.The structural and functional network topological properties were compared among the BD-OCS,BD-nOCS,and control groups.Partial correlation analysis was conducted to examine the association between network topological metrics with significant group differences and Yale-Brown Obsessive-Compulsive Scale(Y-BOCS)scores.Support vector machines(SVM)were used with these metrics as classificationfeaturevalues toimproveediagnostic accuracy through pairwise group classification.Results Structural network analysis of gray matter:compared to HC group,both OCS group and NOCS group showed increasedshortesttpathlengthand standardized characteristic path length(shortest path length:0.78 and 0.80 vs.0.69;normalized characteristic path length:0.48 and 0.49 vs.0.43),and decreased global efficiency(0.21 and 0.21 vs.0.24)compared to the HC group(permutation test,all P<0.05).Compared to NOCS and HC groups,the OCS group showed increased nodal centrality and betweenness centrality in the right rolandic operculum and left superior occipital gyrus(permutation test,all P<0.05).Functional network analysis of gray matter:compared to the NOCS group,the OCS group showed increased node efficiency and decreased betweenness centrality in the cerebellum(t=2.15,-3.04;all P<0.05);compared to HC groups,the OCS group showed decreased betweenness centrality in the cerebellum and left inferior frontal gyrus,along with increased node centrality and nodal efficiency in the right transverse temporal gyrus(t=-2.99,-3.61,3.06,3.10;all P<0.05).In the 0CS group,betweenness centrality in the left inferior frontal gyrus positively correlated with Y-BOCS scale obsessive thinking score(r=0.303,P=0.034).Nodal centrality and node efficiency of the right transverse temporal gyrus negatively correlated with Y-BOCS total score(r=-0.301,-0.311)and Y-BOCS obsessional thinking scores(r=-0.385,-0.380)separately(all P<0.05).SVM classification:the combined network features achieved an area under the curve of 0.80 in distinguising OCS from NOCS patients.Conclusion BDOCS and BD-nOCS patients both exhibit consistent changes in gray matter structural network topology,with theOCSSgroup displaying more pronounced nodal topological abnormalities.Multi-network feature integration demostrates potential for diagnostic classfication.
基金supported by General Program of the Natural Science Foundation of Hebei Province(No.H2024110033,China).
文摘Hypoxic pulmonary hypertension(HPH)is a pathophysiological state characterized by diverse clinical symptoms resulting from structural and functional changes in pulmonary vessels induced by hypoxic stimuli,leading to increased pulmonary artery pressure.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the National Natural Science Foundation of China(32300959)a Guangzhou Scientific Research Grant(SL2024A04J00578)the SCNU Young Faculty Development Program(22KJ04).
文摘Neuron glia antigen-2(NG2)glia,also known as oligodendrocyte precursor cells(OPCs),are essential for maintaining the normal function and structure of the central nervous system(CNS)due to their supportive role[1].Under physiological conditions,NG2 glia are involved in myelination by differentiating into oligodendrocytes,which are responsible for forming the myelin sheath around axons[2].In addition,the NG2 glia can directly influence the activity of neuronal circuits by receiving synaptic input from neurons and generating action potentials[3].Under pathological conditions,such as in response to injury or disease,the NG2 glia proliferate and differentiate to replace damaged oligodendrocytes,contributing to the repair and regeneration of myelin[4].
基金This project was surpported by the Natural Science Foundation of Shandong Province of China (Y2004A94)
文摘Based on S-rough sets(singular rough sets), this paper presents function S-rough sets (function singular rough sets)and its mathematical structures and features. Function S-rough sets has two forms: function one direction S-rough sets (function one direction singular rough sets) and function two direction S-rough sets (function two direction singular rough sets). This paper advances the relationship theorem of function S-rough sets and S-rough sets. Function S-rough sets is the general form of S-rough sets, and S-rough sets is the special ease of function S-rough sets. In this paper, applications of function S-rough sets in rough law mining-discovery of system are given. Function S-rough sets is a new research direction of rough sets and rough system.
基金This project was supported by Natural Science Foundation of Shandong Province of China (Y2004A04), Natural ScienceFoundation of Fujian of China (Z051049) and Education Foundation of Fujian of China (JA04268),.
文摘Function S-rough sets (function singular rough sets) is defined on a -function equivalence class [u]. Function S-rough sets is the extension form of S-rough sets. By using the function S-rough sets, this paper gives rough law generation model of a-function equivalence class, discussion on law mining and law discovery in systems, and application of law mining and law discovery in communication system. Function S-rough sets is a new theory and method in law mining research.
基金supported by the Natural Science Foundation of Beijing,China (Grant No. 4092005)the National High Technology Research and Development Program of China (Grant No. 2009AA032704)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110006)
文摘The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.
基金This work was supported by the National Natural Science Foundation of China(31772042)Ramóny Cajal grant(RYC2020-030365-I)+1 种基金Xunta de Galicia for supporting the program(Excelencia-ED431F2022/01)the Key Research&Development Program of Zhejiang Province(2021C02015).
文摘Cuticular wax plays a major role in the growth and storage of plant fruits.The cuticular wax coating,which covers the outermost layer of a fruit’s epidermal cells,is insoluble in water.Cuticular wax is mainly composed of very long-chain fatty acids(VLCFAs);their derivatives,including esters,primary alcohols,secondary alcohols,aldehydes,and ketones;and triterpenoids.This complex mixture of lipids is probably biosynthesized in the epidermal cells of most plants and exuded onto the surface.Cuticular wax not only makes the fruit less susceptible to microbial infection but also reduces mechanical damage to the fruit,thereby maintaining the fruit’s commodity value.To date,research has mostly focused on the changes,function,and regulation of fruit wax before harvest,while ignoring the changes and functions of wax in fruit storage.This paper reviews on the composition,structure,and metabolic regulation of cuticular wax in fruits.It also focuses on postharvest factors affecting wax composition,such as storage temperature,relative humidity(RH),gas atmosphere,and as exogenous hormones;and the effects of wax on fruit postharvest quality,including water dispersion,fruit softening,physiological disorders,and disease resistance.These summaries may be of assistance in better understanding the changes in cuticular wax in postharvest fruit and the resulting effects on fruit quality.
基金supported by the National Natural Science Foundation of China(10828204 and A020401)BUAA SJP 111 program
文摘The approach of Obukhov assuming a constant skewness was used to obtain analytical corrections to the scaling of the second order structure function, starting from Kolmogorov's 4/5 law. These corrections can be used in model applications in which explicit expressions, rather than numerical solutions are needed. The comparison with an interpolation formula proposed by Batchelor, showed that the latter gives surprisingly precise results. The modification of the same method to obtain analytical corrections to the scaling law, taking into account the possible corrections induced by intermittency, is also proposed.