期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Structural engineering of MXenes towards high electrochemical performance in supercapacitors
1
作者 Yan Liu Kaiyang Guo +4 位作者 Yuanmeng Ge Wenzheng Yan Kai Gu Yapeng Tian Xinwei Cui 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1783-1812,共30页
Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent yea... Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent years owing to their unique structure and rich surface functional groups.Compared with other materials,MXenes are more promising for SCs owing to their tunable precurs-ors,structural stability,and excellent electrical conductivity.However,the rate performance and electrochemical reaction activity of MXene materials are poor,and stacking severely limits their application.Therefore,various modification strategies are employed to im-prove the electrochemical performance of MXene materials.As the modification strategy of MXene electrode materials often involves in-creasing the number of ion transport channels to expose more active sites,the packing density is also affected to different degrees.There-fore,achieving a balance between high volumetric capacitance and rapid ion transport has become a key issue for the application of MXene-based SCs in wearable devices and microdevices.In this paper,the latest progress in the preparation methods and modification strategies of MXenes in recent years is reviewed with the aim of achieving both high volumetric capacitance and high ion transport for ex-panding the application of MXene-based SCs in microdevices and wearable devices. 展开更多
关键词 MXenes structural engineering electrochemical performance SUPERCAPACITOR
在线阅读 下载PDF
Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance 被引量:2
2
作者 Ming-Lu Huang Cheng-Long Luo +3 位作者 Chang Sun Kun-Yan Zhao Yingqing Ou Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期201-209,共9页
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs... Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP. 展开更多
关键词 Microwave absorption Carbonyl iron powder ANTI-OXIDATION Interfacial polarization Surface structural engineering
原文传递
Structural engineering of Fe single-atom oxygen reduction catalyst with high site density and improved mass transfer
3
作者 Jiawen Wu Yuanzhi Zhu +3 位作者 An Cai Xiaobin Fan Wenchao Peng Yang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期634-644,共11页
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re... Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications. 展开更多
关键词 Single-atom catalysts Oxygen reduction reaction structural engineering Active site density Mass transfer Zinc-air batteries
在线阅读 下载PDF
Structural engineering of Sb-based electrode materials to enhance advanced sodium-ion batteries
4
作者 Zheng Yang Qiao-Ling Kang +3 位作者 Rui-Wang Li-Jing Yan Xian-He Meng Ting-Li Ma 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期4777-4806,共30页
Antimony(Sb)is recognized as a potential electrode material for sodium-ion batteries(SIBs)due to its huge reserves,affordability,and high theoretical capacity(660 mAh·g^(-1)).However,Sb-based materials experience... Antimony(Sb)is recognized as a potential electrode material for sodium-ion batteries(SIBs)due to its huge reserves,affordability,and high theoretical capacity(660 mAh·g^(-1)).However,Sb-based materials experience significant volume expansion during cycling,leading to comminution of the active substance and limiting their practical use in SIBs.Therefore,the volume expansion issue of Sb-based materials during charging/discharging must be solved to create high-performance SIBs.This paper presents a detailed review of structural engineering of Sb-based electrode materials,focusing on the performance effects of different kinds of structures on advanced performance SIBs.Finally,the future development and the challenges of Sb-based materials are prospected.This paper can provide specific perspectives on the structure construction and optimization of Sb-based anode materials so as to promote the rapid development and practical applications of SIBs. 展开更多
关键词 Sb-based electrode Sodium-ion batteries structural engineering
原文传递
Structural engineering and high entropy effect toward improved mechano-electrochemical performance in lithium batteries
5
作者 Hao-Yu Xu Rui Wang +6 位作者 Feng-Feng Dong Zheng Yang Dong-Yun Li Yang Xu Hong-Liang Ge Ming-Jian Yuan Qiao-Ling Kang 《Rare Metals》 2025年第9期6040-6052,共13页
The inferior structure/electrochemistry stability due to the volume expansion and the less lithium storage active sites of transition metal oxide (TMO) are critical issue hindering their commercialization.The rational... The inferior structure/electrochemistry stability due to the volume expansion and the less lithium storage active sites of transition metal oxide (TMO) are critical issue hindering their commercialization.The rational design to utilize the combined advantages of both structure and composition is a key strategy to address these challenges.Here,the (FeCoNiMnCrMg)_(2)O_(3)high entropy oxide(HEO) with different morphologic structures are developed through integrating molecule and microstructure engineering.The morphologic structure of high entropy oxide transforms from solid spheres to multishelled core-shell spheres,and then to hollow spheres,which is governed by a thermally induced non-uniform shrinkage process coupled with Kirkendall effect diffusion due to the different calcination temperature.Even with the incorporation of various metallic ions,the high entropy oxide with a homogeneous single-phase solid solution maintained their shape and uniformity in size due to the ability of metal ions to coexist on the same lattice point.Benefiting from the meticulous control of both compositional and geometric factors,the hollow high entropy oxide exhibited a significantly high specific capacity (1722.1 mAh g^(-1)after 200cycles at 1 A g^(-1)) and long-life span for lithium storage(2158.7 mAh g^(-1)over 900 cycles at 4 A g^(-1)).The collaborative lattice and consistent volume demonstrated in this study offer significant potential in directing the development of materials for advanced energy storage solutions. 展开更多
关键词 structural engineering High entropy effect High-entropy oxides Lithium batteries Anode material
原文传递
Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries:Structural and electronic engineering
6
作者 Jianmei Han Peng Wang +4 位作者 Hua Zhang Ning Song Xuguang An Baojuan Xi Shenglin Xiong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期147-166,共20页
Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox... Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs. 展开更多
关键词 Lithium-sulfur batteries CHALCOGENIDE Catalytic materials Lithium polysulfides structural engineering Electronic engineering
原文传递
Heteroatom Structural Engineering Enables Ethenylene-Bridged Bisisoindigo-Based Copolymers to Exhibit Unique n-Type Transistor Performance
7
作者 Yuchai Pan Weifeng Zhang +5 位作者 Yankai Zhou Xuyang Wei Hao Luo Jinbei Wei Liping Wang Gui Yu 《CCS Chemistry》 CSCD 2024年第2期473-486,共14页
Herein,we report three novel electron-deficient aromatics,ethenylene-bridged bisisoindigos 3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoind-oline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-d... Herein,we report three novel electron-deficient aromatics,ethenylene-bridged bisisoindigos 3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoind-oline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NCCN),3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one)(NFFN),and(3E,3″E)-6,6″-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione)(NNNN),and their derived donor–acceptor(D–A)copolymers,namely poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNCCN-FBT),poly[3,3′-((3E,3′E)-((E)-ethene-1,2-diyl)bis(1-(4-decyltetradecyl)-7-fluoro-2-oxoindoline-6-yl-3-ylidene))bis(1-(4-decyltetradecyl)-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-one-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNFFNFBT),and poly[(3E,3″E)-6′,6‴-((E)-ethene-1,2-diyl)bis(1,1′-bis(4-decyltetradecyl)-[3,3′-bipyrrolo[2,3-b]pyridinylidene]-2,2′(1H,1′H)-dione-6-yl)]-alt-[5,6-difluoro-4,7-di[(thiophen-2-yl)-5-yl)]benzo[c][1,2,5]thiadiazole](PNNNN-FBT),in which 5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole(FBT)acts as the electron-donating units.The ethenylene-bridging unit reduces the steric hindrance of the three bisisoindigos.Incorporation of heteroatoms,such as fluorine and sp2-nitrogen atoms,endows them with multiple CH···F,CH···N,and N···S intramolecular hydrogen bonds/nonbinding interactions,resulting in increasing backbone planarity from NCCN,NFFN,to NNNN,and thus from PNCCN-FBT,PNFFN-FBT,to PNNNN-FBT.We found that all copolymers formed an improved molecular packing in the 1-chloronaphthalene(CN)-processed thin film compared with the 1,2-dichlorobenzene-processed one.The CN-processed PNCCN-FBT-based polymer field-effect transistors showed ambipolar transport characteristics with the electron mobility(μe)and hole mobility of 1.20 and 0.46 cm^(2)V^(−1)^s(−1),respectively,while the PNFFN-FBT-and PNNNN-FBT-based ones afforded unique n-type transport characteristics with impressively highμe up to 3.28 cm^(2)V^(−1)^s(−1).The lower frontier molecular orbital energy levels of PNFFN-FBT are the key reason for its higherμe.This study demonstrated that heteroatom structural engineering on ethenylene-bridged bisisoindigos is an effective way to construct high-performance n-type polymer semiconductors. 展开更多
关键词 D-A copolymers bisisoindigos heteroatom structural engineering n-type field-effect transistors electron mobilities
在线阅读 下载PDF
Kinked Rebar and Engineering Structures Applying Kinked Materials:State-ofthe-Art Review
8
作者 Chengquan Wang Lei Xu +4 位作者 Xinquan Wang Yun Zou Kangyu Wang Boyan Ping Xiao Li 《Structural Durability & Health Monitoring》 2025年第2期233-263,共31页
Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of ... Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of reinforced concrete(RC)structures without imposing substantial cost burdens,thereby emerging as a focal point of recent research endeavors.On the basis of explaining the working principle of kinked rebars,this paper reviews the research status of kinked rebars at home and abroad from three core domains:the tensile mechanical properties of kinked rebars,beam column nodes with kinked rebars,and concrete frame structures with kinked rebars.The analysis underscores that the straightening process of kinked rebars does not compromise their ultimate strength but significantly bolsters structural ductility and enhances energy dissipation capabilities.In beam-column joints,the incorporation of kinked rebars facilitates the seamless transfer of plastic hinges,adhering to the design principle of“strong columns and weak beams.”In addition,kinked rebars can greatly improve the resistance of the beam;The seismic resistance,internal explosion resistance,and progressive collapse resistance of reinforced concrete frame structures with kinked rebar have significantly improved.Beyond its primary application,the principle of kinked rebar was extended to other applications of kinked materials such as corrugated steel plates and origami structures,and the stress characteristics of related components and structures were studied.Intriguingly,this paper also proposes the application of kinked rebars in bridge engineering,aiming to address the challenges of localized damage concentration and excessive residual displacement in RC bridge piers.The introduction of kinked rebars in piers is envisioned to mitigate these issues,with the paper outlining its advantages and feasibility,thereby offering valuable insights for future research on kinked reinforcement and seismic design strategies for bridges. 展开更多
关键词 structural engineering kinked rebar seismic performance explosion-resistant performance progressive collapse
在线阅读 下载PDF
Intelligent vectorial surrogate modeling framework for multi-objective reliability estimation of aerospace engineering structural systems
9
作者 Da TENG Yunwen FENG +1 位作者 Junyu CHEN Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期156-173,共18页
To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fus... To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory. 展开更多
关键词 Intelligent vectorial surrogate modeling Intelligent vectorial neural network Aerospace engineering structural systems Multi-objective reliability estimation Matrix theory
原文传递
Effective stress dissipation by multi-dimensional architecture engineering for ultrafast and ultralong sodium storage
10
作者 Man Zhang Jing Zhu +7 位作者 Qianqian Li Fenghua Zheng Sijiang Hu Youguo Huang Hongqiang Wang Xing Ou Qichang Pan Qingyu Li 《Journal of Energy Chemistry》 2025年第2期619-629,I0013,共12页
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial... Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs. 展开更多
关键词 Stress dissipation Multi-dimensional architecture Structure engineering Conversion-based anodes Sodium-ion batteries
在线阅读 下载PDF
Rational engineering of triazine-benzene linked covalent-organic frameworks for efficient CO_(2)photoreduction
11
作者 Yanghe Fu Yijing Gao +6 位作者 Huilin Jia Yuncai Zhao Yan Feng Weidong Zhu Fumin Zhang Morris D.Argyle Maohong Fan 《Green Energy & Environment》 2025年第4期804-812,共9页
Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural unit... Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural units affect the efficiency of CO_(2)photoreduction.Results from both experiments and density-functional theory(DFT)calculations indicate the separation and transfer of the photoinduced charges is highly related to the triazine-N content and the conjugation degree in the skeletons of COFs.High-efficiency CO_(2)photoreduction can be achieved by rationally adjusting the number and position of both benzene and triazine rings in the COFs.Specifically,TTA-TTB,with orderly interlaced triazine-benzene heterojunctions,can suppress the recombination probability of electrons and holes,which effectively immobilizes the key species(COOH)and lowers the free energy change of the potential-determining step,and thus exhibits a superior visible-light-induced photocatalytic activity that yields 121.7 μmol HCOOH g^(-1)h^(-1).This research,therefore,helps to elucidate the effects of the different structural blocks in COFs on inherent heterogeneous photocatalysis for CO_(2)reduction at a molecular level. 展开更多
关键词 Chemical structure engineering Photocatalysis CO_(2)reduction COFs Molecular simulation
在线阅读 下载PDF
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
12
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Safety Evaluation and Management of Engineering Structures Based on Intelligent Technology
13
作者 Lingxu Li Mingchang Ma Zitong Ma 《Proceedings of Business and Economic Studies》 2025年第3期312-316,共5页
With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering stru... With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering structures.This paper discusses the role of intelligent technologies(such as artificial intelligence,Internet of Things,BIM,big data analysis,etc.)in the monitoring,evaluation,and maintenance of engineering structure safety.By studying the principle,application scenarios,and advantages of intelligent technology in structural safety evaluation,this paper summarizes how intelligent technology can improve engineering management efficiency and reduce safety risks,and puts forward the trend and challenge of future development. 展开更多
关键词 Intelligent technology engineering structure Safety evaluation structural health monitoring BIM Big data
在线阅读 下载PDF
Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis 被引量:7
14
作者 Wenjun Jiang Hui Wang +2 位作者 Xiaodong Zhang Yongfa Zhu Yi Xie 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第10期1205-1213,共9页
As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the op... As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C_3N_4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C_3N_4-based photocatalysis are presented as the conclusion of this review. 展开更多
关键词 polymeric carbon nitride structural engineering synthetic strategies PHOTOCATALYSIS
原文传递
Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance 被引量:4
15
作者 Changlai Wang Jian Lu +9 位作者 Huigang Tong Shuilin Wu Dongdong Wang Bin Liu Ling Cheng Zhiyu Lin Lin Hu Hui Wang Wenjun Zhang Qianwang Chen 《Nano Research》 SCIE EI CSCD 2021年第10期3545-3551,共7页
Owing to the high theoretical capacity,metal sulfides have emerged as promising anode materials for potassium-ion batteries(PIBs).However,sluggish kinetics,drastic volume expansion,and polysulfide dissolution during c... Owing to the high theoretical capacity,metal sulfides have emerged as promising anode materials for potassium-ion batteries(PIBs).However,sluggish kinetics,drastic volume expansion,and polysulfide dissolution during charge/discharge result in unsatisfactory electrochemical performance.Herein,we design a core-shell structure consisting of an active bismuth sulfide core and a highly conductive sulfur-doped carbon shell(Bi2S3@SC)as a novel anode material for PIBs.Benefiting from its unique core-shell structure,this Bi2S3@SC is endowed with outstanding potassium storage performance with high specific capacity(626 mAh·g^(-1)under 50 mA·g^(-1))and excellent rate capability(268.9 mAh·g^(-1)at 1 A·g^(-1)).More importantly,a Bi2S3@SC//KFe[Fe(CN)6]full cell is successfully fabricated,which achieves a high reversible capacity of 257 mAh·g^(-1)at 50 mA·g^(-1)over 50 cycles,holding great potentials in practical applications.Density functional theory(DFT)calculations reveal that potassium ions have a low diffusion barrier of 0.54 eV in Bi2S3 due to the weak van der Waals interactions between layers.This work heralds a promising strategy in the structural design of high-performance anode materials for PIBs. 展开更多
关键词 structural engineering potassium-ion batteries core-shell structure diffusion barrier full cell
原文传递
Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production 被引量:4
16
作者 Qing He Bounxome Viengkeo +6 位作者 Xuan Zhao Zhengyuan Qin Jie Zhang Xiaohan Yu Yongpan Hu Wei Huang Yanguang Li 《Nano Research》 SCIE EI CSCD 2023年第4期4524-4530,共7页
Carbon nitride(C_(3)N_(4))holds great promise for photocatalytic H_(2)O_(2)production from oxygen reduction.In spite of great research efforts,they still suffer from low catalytic efficiency primarily limited by the f... Carbon nitride(C_(3)N_(4))holds great promise for photocatalytic H_(2)O_(2)production from oxygen reduction.In spite of great research efforts,they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers.In this work,we report the multiscale structural engineering of C_(3)N_(4)to significantly improve its optoelectronic properties and consequently photocatalytic performance.The product consists of porous spheres with high surface areas,abundant nitrogen defects,and alkali metal doping.Under visible light irradiation,our catalyst shows a remarkable H_(2)O_(2)production rate of 3,080μmol·g^(−1)·h^(−1),which is more than 10 times higher than that of bulk C_(3)N_(4)and exceeds those of most other C_(3)N_(4)-based photocatalysts.Moreover,the catalyst exhibits great stability,and can continuously work for 15 h without obvious activity decay under visible light irradiation,eventually giving rise to a high H_(2)O_(2)concentration of ca.45 mM. 展开更多
关键词 photocatalytic H_(2)O_(2)production oxygen reduction carbon nitride multiscale structural engineering
原文传递
Structural engineering of transition-metal nitrides for surfaceenhanced Raman scattering chips 被引量:1
17
作者 Leilei Lan Haorun Yao +3 位作者 Guoqun Li Xingce Fan Mingze Li Teng Qiu 《Nano Research》 SCIE EI CSCD 2022年第4期3794-3803,共10页
Noble-metal-free surface-enhanced Raman scattering(SERS)substrates have attracted great attention for their abundant sources,good signal uniformity,superior biocompatibility,and high chemical stability.However,the lac... Noble-metal-free surface-enhanced Raman scattering(SERS)substrates have attracted great attention for their abundant sources,good signal uniformity,superior biocompatibility,and high chemical stability.However,the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications.Herein,we propose a general strategy to fabricate a series of planar transition-metal nitride(TMN)SERS chips via an ambient temperature sputtering deposition route.For the first time,tungsten nitride(WN)and tantalum nitride(TaN)are used as SERS materials.These planar TMN chips show remarkable Raman enhancement factors(EFs)with~105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules.Further,structural engineering of these TMN chips is used to improve their SERS activity.Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure,the Raman EF of WN nanocavity chips could be greatly improved to~1.29×10^(7),which is an order of magnitude higher than that of planar chips.Moreover,we also design the WN/monolayer MoS2 heterostructure chips.With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure,a~1.94×10^(7)level EF and a 5×10^(-10)M level detection limit could be achieved.Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips. 展开更多
关键词 structural engineering transition-metal nitrides(TMN) surface-enhanced Raman scattering(SERS) NANOCAVITY HETEROSTRUCTURE
原文传递
Causality in structural engineering: discovering new knowledge by tying induction and deduction via mapping functions and explainable artificial intelligence
18
作者 M.Z.Naser 《AI in Civil Engineering》 2022年第1期82-97,共16页
Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing caus... Causality is the science of cause and effect.It is through causality that explanations can be derived,theories can be formed,and new knowledge can be discovered.This paper presents a modern look into establishing causality within structural engineering systems.In this pursuit,this paper starts with a gentle introduction to causality.Then,this paper pivots to contrast commonly adopted methods for inferring causes and effects,i.e.,induction(empiricism)and deduc-tion(rationalism),and outlines how these methods continue to shape our structural engineering philosophy and,by extension,our domain.The bulk of this paper is dedicated to establishing an approach and criteria to tie principles of induction and deduction to derive causal laws(i.e.,mapping functions)through explainable artificial intelligence(XAI)capable of describing new knowledge pertaining to structural engineering phenomena.The proposed approach and criteria are then examined via a case study. 展开更多
关键词 CAUSALITY Explainable artificial intelligence Mapping functions Knowledge discovery structural engineering
原文传递
Structure engineering of cathode host materials for Li-S batteries 被引量:3
19
作者 Jia-Jun Long Hua Yu Wen-Bo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1370-1389,共20页
Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges in... Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided. 展开更多
关键词 Lithium-sulfur batteries Structure engineering CATHODE Host materials
原文传递
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:3
20
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部