The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed w...The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed will lead to a change in the shape and buoyancy of the airship,thereby affecting its flight control.The traditional static analysis method is difficult to accurately reflect this fuid-thermal-structural coupling process.In this paper,the iterative analysis method was established for the fluid-thermal-structural coupling effect of stratospheric non-rigid airship based on the models of fluid,thermal,and structural deformation.Considering the load such as the internal thermal effect and external flow field of the airship,the simulation of the thermo-induced structural deformation effect was conducted using Fluent and Abaqus software.The influ-ence of local time and external wind speed on the structural deformation,volume,and equilibrium altitude of the airship was analyzed.The results demonstrate that,at low wind speed,the influence of aerodynamic pressure on the deformation of the airship is negligible.However,a great amount of heat is carried away by the wind,then the structural deformation caused by internal and external pressure difference is alleviated and the equilibrium altitude of the airship change obviously.This can serve as a guideline for the design and flight test of the long-endurance stratospheric non-rigid airship.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es...Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.展开更多
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri...The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance.展开更多
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr...For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.展开更多
A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China,...A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension.展开更多
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happe...Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2-3), the end of Early-Middle Devonian (D1-2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2-3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1-2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2-3) deformation is obviously more violent than those of the latter two stages (D1-2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin.展开更多
The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical...The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical simulation. In order to find the most favorable locations of mineralization and to help further mineral exploration, a coupling deforma- tion and fluid flow model has been established to describe the mineralization process. In this model, the simulation re- constructs the strata deformations under fields of compressive stress and thrust structure on the hanging wall of the Zou-Shi fault. Compared with practical information, the simulation results are consistent with the No. 51 exploration section of the western Xiangshan. In addition, on the basis of geological information provided by previous investigators, the model simulates the flow process of fluids under compressive stress fields. The result suggests that many tensional areas are formed, which can help the fluid flowing upward from deeper parts. The fluid is easy to concentrate on the breccia fractured zone between two volcanic layers, especially on the intersection parts with faults, resulting in the for- mation of favourable locations of mineralization. In addition, the model is significant in guiding the exploration of ura- nium deposits in the western Xiangshan and provides clues for further exploration of deposits.展开更多
Hydrocarbon preservation conditions have restricted exploration in the Middle and Upper Yangtze,and structural deformation and fluid activity have played an important role in the origin and preservation of oil and gas...Hydrocarbon preservation conditions have restricted exploration in the Middle and Upper Yangtze,and structural deformation and fluid activity have played an important role in the origin and preservation of oil and gas.In order to study that how the deformation and fluid activity impact the hydrocarbon preservation,we did some field work and collected some calcite vein samples for analysis of deformation periods using acoustic emission and fluid inclusions.Combined with previous studies,the strata distribution,tectonic deformation and fluid characteristics show that there are three structural belts in the study area:East Sichuan,West Hunan and Hubei and the northwestern periphery of the Xuefeng Uplift,and that their tectonic deformation style,fluid inclusion characteristics and hydrocarbon preservation are different.The breakthrough thrusts were well developed in the anticline core,and a lot of hydrocarbon inclusions were found in calcite veins around the thrusts in East Sichuan.The breakthrough thrusts were only in the syncline core in West Hunan and Hubei,and the brine inclusions did not contain hydrocarbon in calcite veins around the thrusts.Many breakthrough thrusts were found in the northwestern periphery of the Xuefeng Uplift,where there were only rare calcite veins.The deformation and hydrocarbon inclusion indicated that when there was no fault breakthrough in East Sichuan,the Paleozoic covered by the Triassic regional cap was good for hydrocarbon preservation.The strata above the Lower Paleozoic were denuded,and lots of brine inclusions and deep infiltration of surface water were found in the West Hunan and Hubei,so only the part of the syncline area with a well developed Silurian regional cap had good preservation conditions.Intense tectonic movements and denudation were widely developed in the northwestern periphery of the Xuefeng Uplift,where there were only paleo-reservoirs,non-hydrocarbon fluid activity and poor preservation conditions.展开更多
The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of st...The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of strain induced a2/γinterfaces and two types of strain induced twin boundaries were identified The most,important features are high density of ledges and the existence of I/3[111] Frank partial dislocation. Mechanisms for the formation these interfaces were proposed Two types of deformation twins were observed These deformation twins always start from the ledges it seems that ledges at interfaces are important features of interfacial structure for the mechanical behavior of alloys.展开更多
The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) tec...The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) technique with the intense pump laser. Here, we present the mechanism of molecular alignment and deformation. The CARS spectra and its FFT spectra of liquid NM show that the NO2 torsional mode couples with the CN symmetric stretching mode and that the NO2 group undergoes ultrafast structural deformation with a relaxation time of 195 fs. The frequency of the NO2 torsional mode in liquid NM(50.8±0.3 cm^-1) at room temperature is found. Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field.展开更多
In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step fu...In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.展开更多
The Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin is located in the complex marine tectonic area of South China,where shale deformation and reformation are intense and t...The Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin is located in the complex marine tectonic area of South China,where shale deformation and reformation are intense and the factors controlling sweet spots are complex,so the preservation conditions have an important impact on the enrichment of shale gas.In order to support the selection and evaluation of shale gas sweet spots in this area and improve the success rate of drilling,this paper carried out a geological survey onfield outcrops.Then,based on drilling,mud logging and physical property test data,the structural deformation pattern and the regional deformation characteristics of this demonstration area were analyzed,and the development characteristics of formation joints and fractures,the sealing capacity of shale sur-rounding rock and the distribution characteristics of gas reservoirs were studied.Finally,the preservation conditions of shale gas in the Wufeng Formation of Upper Ordovician and the Longmaxi Formation of Lower Silurian were discussed.And the following research results were ob-tained.First,in the Zhaotong National Shale Gas Demonstration Area,three structural deformation patterns are developed from south to north,including trough type,equal amplitude type and baffle type,which are distributed in three major deformation zones,respectively,i.e.,the shear deformation zone of Central Guizhou Uplift,the compressionetorsion deformation zone of northern YunnaneGuizhou Depression and the compression deformation zone of Southern Sichuan Depression.Second,three types of joints and fractures whose relationships with the di-rection of strata are high angle,middleelow angle and bedding intersection are developed in the WufengeLongmaxi formations and its overlying strata,and their occurrence characteristics are basically consistent with those of the three major deformation zones.Third,the shale of WufengeLongmaxi formations is thick in the north and thin in the south and possesses the preservation conditions of sourceereservoir inte-gration and self-sealing hydrocarbon accumulation.And combined with the sealing ability of the overburden strata and the roof andfloor,its preservation conditions are overall better.Fourth,from the perspective of shale gas component,this area can be divided into three belts,i.e.,methane,methaneþnitrogen mixture and nitrogen from north to south.And the preservation conditions of shale gas are generally better in the north and worse in the south.In conclusion,the shale in the centralenorthern part of Zhaotong National Shale Gas Demonstration Area(compression deformation area and its southern margin)is the most favorable area because of its large shale thickness,weak reformation and deformation,bedding development of joints and fractures,good sealing performance and excellent preservation conditions.The compressionetorsion deformation zone of northern YunnaneGuizhou Depression in the central part is moderate in preservation conditions,and it is the relatively favorable area.The shear deformation zone of Central Guizhou Uplift in the southern part has poor preservation conditions,and it is a prospective area.展开更多
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents ...During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight.展开更多
Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation in...Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation inversion history of the Bomun sub-basin in the Gyeongju area of SE Korea.The inferred ENE compression direction(σHmax)based on paleostress analysis of the fault system,displacing Miocene sediments and SSDS,corresponds to the current stress field.The widespread occurrence of clear liquefaction structures and the vertical repetition of SSDS indicate substantial seismic activity during the basin opening stage.Brittle deformation features observed at both outcrop-and microstructural-scale along the faults suggest a reactivation as reverse faulting associated with a tilting process.The tectonic history of the study area is distinguished by SSDS associated with seismic activity,and reverse faulting associated with inversion process under ENE orientedσHmax.The Environmental Seismic Intensity Scale(ESI-07)based on the SSDS indicates seismic intensity of IX-X,which might be related with the opening of the Bomun sub-basin.Therefore,detailed analyses of SSDS could provide valuable insights on the dynamics of local geology and contribute to further extensive research on seismic hazards and basin inversion.展开更多
Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1...Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.展开更多
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e...Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.展开更多
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indica...Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.展开更多
基金the National Natural Science Foundation of China (Nos.52302511,52202454,52202513).
文摘The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed will lead to a change in the shape and buoyancy of the airship,thereby affecting its flight control.The traditional static analysis method is difficult to accurately reflect this fuid-thermal-structural coupling process.In this paper,the iterative analysis method was established for the fluid-thermal-structural coupling effect of stratospheric non-rigid airship based on the models of fluid,thermal,and structural deformation.Considering the load such as the internal thermal effect and external flow field of the airship,the simulation of the thermo-induced structural deformation effect was conducted using Fluent and Abaqus software.The influ-ence of local time and external wind speed on the structural deformation,volume,and equilibrium altitude of the airship was analyzed.The results demonstrate that,at low wind speed,the influence of aerodynamic pressure on the deformation of the airship is negligible.However,a great amount of heat is carried away by the wind,then the structural deformation caused by internal and external pressure difference is alleviated and the equilibrium altitude of the airship change obviously.This can serve as a guideline for the design and flight test of the long-endurance stratospheric non-rigid airship.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science and Technology Project(2023ZZ14).
文摘Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.
基金supported by the National Key Technology R&D Program of China(Nos.2021YFB3500801,2022YFB3504302 and 2022YFC3901503)the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(Nos.0232BAB214025 and 20232BCJ25044)the Double Thousand Plan of Jiangxi Province(No.jxsq2023201002).
文摘The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance.
基金Supported by the Science and Technology Special Project of CNPC(2023YQX10111)Key Research and Development Special Project of Xinjiang Uygur Autonomous Region(2024B01015-3)。
文摘For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.
基金supported by the projects the China Geological Survey(Nos.12120113089600,12120114028701 and 1212011085472)the Key Project of Natural Science Foundation of China(No.41530321)the Fundamental Research Funds for the Central University(No.2652017259)
文摘A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension.
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
基金supported by the National Science and Technology Project of Tenth Five Years (No. 2001BA605A06A)Science and the Technology Cooperation Programs of SINOPEC, China (Nos. FYWX04-06, XBKT2007KY10-021)
文摘Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2-3), the end of Early-Middle Devonian (D1-2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2-3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1-2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2-3) deformation is obviously more violent than those of the latter two stages (D1-2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin.
基金Projects GPMR0547 supported by the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and 2002 CB 412601 by the Chinese Ministry of Science and Technology
文摘The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical simulation. In order to find the most favorable locations of mineralization and to help further mineral exploration, a coupling deforma- tion and fluid flow model has been established to describe the mineralization process. In this model, the simulation re- constructs the strata deformations under fields of compressive stress and thrust structure on the hanging wall of the Zou-Shi fault. Compared with practical information, the simulation results are consistent with the No. 51 exploration section of the western Xiangshan. In addition, on the basis of geological information provided by previous investigators, the model simulates the flow process of fluids under compressive stress fields. The result suggests that many tensional areas are formed, which can help the fluid flowing upward from deeper parts. The fluid is easy to concentrate on the breccia fractured zone between two volcanic layers, especially on the intersection parts with faults, resulting in the for- mation of favourable locations of mineralization. In addition, the model is significant in guiding the exploration of ura- nium deposits in the western Xiangshan and provides clues for further exploration of deposits.
基金sponsored by the National Basic Research Program of China (Grant No. 2012CB214804,2005CB422107 and G1999043305)the National Natural Science Foundation of China (Grant Nos. 41172125,40972090, and 40672143)+1 种基金the National Key Scientific Project(Grant No. 2011ZX05002-006-007HZ, 2008ZX05005-002-008HZ-1)the Doctoral Fund of Ministry of Education of China (Grant No. 200804250001)
文摘Hydrocarbon preservation conditions have restricted exploration in the Middle and Upper Yangtze,and structural deformation and fluid activity have played an important role in the origin and preservation of oil and gas.In order to study that how the deformation and fluid activity impact the hydrocarbon preservation,we did some field work and collected some calcite vein samples for analysis of deformation periods using acoustic emission and fluid inclusions.Combined with previous studies,the strata distribution,tectonic deformation and fluid characteristics show that there are three structural belts in the study area:East Sichuan,West Hunan and Hubei and the northwestern periphery of the Xuefeng Uplift,and that their tectonic deformation style,fluid inclusion characteristics and hydrocarbon preservation are different.The breakthrough thrusts were well developed in the anticline core,and a lot of hydrocarbon inclusions were found in calcite veins around the thrusts in East Sichuan.The breakthrough thrusts were only in the syncline core in West Hunan and Hubei,and the brine inclusions did not contain hydrocarbon in calcite veins around the thrusts.Many breakthrough thrusts were found in the northwestern periphery of the Xuefeng Uplift,where there were only rare calcite veins.The deformation and hydrocarbon inclusion indicated that when there was no fault breakthrough in East Sichuan,the Paleozoic covered by the Triassic regional cap was good for hydrocarbon preservation.The strata above the Lower Paleozoic were denuded,and lots of brine inclusions and deep infiltration of surface water were found in the West Hunan and Hubei,so only the part of the syncline area with a well developed Silurian regional cap had good preservation conditions.Intense tectonic movements and denudation were widely developed in the northwestern periphery of the Xuefeng Uplift,where there were only paleo-reservoirs,non-hydrocarbon fluid activity and poor preservation conditions.
文摘The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of strain induced a2/γinterfaces and two types of strain induced twin boundaries were identified The most,important features are high density of ledges and the existence of I/3[111] Frank partial dislocation. Mechanisms for the formation these interfaces were proposed Two types of deformation twins were observed These deformation twins always start from the ledges it seems that ledges at interfaces are important features of interfacial structure for the mechanical behavior of alloys.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21673211 and 21203047)the Foundation of Heilongjiang Bayi Agricultural University,China(Grant No.XZR2014-16)the Science Challenging Program of China(Grant No.JCKY2016212A501)
文摘The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) technique with the intense pump laser. Here, we present the mechanism of molecular alignment and deformation. The CARS spectra and its FFT spectra of liquid NM show that the NO2 torsional mode couples with the CN symmetric stretching mode and that the NO2 group undergoes ultrafast structural deformation with a relaxation time of 195 fs. The frequency of the NO2 torsional mode in liquid NM(50.8±0.3 cm^-1) at room temperature is found. Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field.
文摘In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.
基金supported by the National Major Science and Technology Project"Zhaotong Shale Gas Exploration&Development Demonstration Project"(No.2017ZX05063)CNPC Major Field Test Project"Research and Test of Key Effective Expoitation Techniques of Deep Shale Gas"(No.:2019F-13)。
文摘The Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin is located in the complex marine tectonic area of South China,where shale deformation and reformation are intense and the factors controlling sweet spots are complex,so the preservation conditions have an important impact on the enrichment of shale gas.In order to support the selection and evaluation of shale gas sweet spots in this area and improve the success rate of drilling,this paper carried out a geological survey onfield outcrops.Then,based on drilling,mud logging and physical property test data,the structural deformation pattern and the regional deformation characteristics of this demonstration area were analyzed,and the development characteristics of formation joints and fractures,the sealing capacity of shale sur-rounding rock and the distribution characteristics of gas reservoirs were studied.Finally,the preservation conditions of shale gas in the Wufeng Formation of Upper Ordovician and the Longmaxi Formation of Lower Silurian were discussed.And the following research results were ob-tained.First,in the Zhaotong National Shale Gas Demonstration Area,three structural deformation patterns are developed from south to north,including trough type,equal amplitude type and baffle type,which are distributed in three major deformation zones,respectively,i.e.,the shear deformation zone of Central Guizhou Uplift,the compressionetorsion deformation zone of northern YunnaneGuizhou Depression and the compression deformation zone of Southern Sichuan Depression.Second,three types of joints and fractures whose relationships with the di-rection of strata are high angle,middleelow angle and bedding intersection are developed in the WufengeLongmaxi formations and its overlying strata,and their occurrence characteristics are basically consistent with those of the three major deformation zones.Third,the shale of WufengeLongmaxi formations is thick in the north and thin in the south and possesses the preservation conditions of sourceereservoir inte-gration and self-sealing hydrocarbon accumulation.And combined with the sealing ability of the overburden strata and the roof andfloor,its preservation conditions are overall better.Fourth,from the perspective of shale gas component,this area can be divided into three belts,i.e.,methane,methaneþnitrogen mixture and nitrogen from north to south.And the preservation conditions of shale gas are generally better in the north and worse in the south.In conclusion,the shale in the centralenorthern part of Zhaotong National Shale Gas Demonstration Area(compression deformation area and its southern margin)is the most favorable area because of its large shale thickness,weak reformation and deformation,bedding development of joints and fractures,good sealing performance and excellent preservation conditions.The compressionetorsion deformation zone of northern YunnaneGuizhou Depression in the central part is moderate in preservation conditions,and it is the relatively favorable area.The shear deformation zone of Central Guizhou Uplift in the southern part has poor preservation conditions,and it is a prospective area.
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
文摘During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight.
基金supported by a grant(2022-MOIS62-001(RS-2022-ND640011))from the National Disaster Risk AnalysisManagement Technology in Earthquake funded by the Ministry of Interior and Safety(MOIS,Korea).
文摘Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation inversion history of the Bomun sub-basin in the Gyeongju area of SE Korea.The inferred ENE compression direction(σHmax)based on paleostress analysis of the fault system,displacing Miocene sediments and SSDS,corresponds to the current stress field.The widespread occurrence of clear liquefaction structures and the vertical repetition of SSDS indicate substantial seismic activity during the basin opening stage.Brittle deformation features observed at both outcrop-and microstructural-scale along the faults suggest a reactivation as reverse faulting associated with a tilting process.The tectonic history of the study area is distinguished by SSDS associated with seismic activity,and reverse faulting associated with inversion process under ENE orientedσHmax.The Environmental Seismic Intensity Scale(ESI-07)based on the SSDS indicates seismic intensity of IX-X,which might be related with the opening of the Bomun sub-basin.Therefore,detailed analyses of SSDS could provide valuable insights on the dynamics of local geology and contribute to further extensive research on seismic hazards and basin inversion.
文摘Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.
文摘Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.
基金supports from the National 973 Project on western China No.2001CB409804the key project of National Natural Science Foundation of China No.49832040.
文摘Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.