期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermoelastic Structural Topology Optimization Based on Moving Morphable Components Framework 被引量:1
1
作者 Jun Yan Qi Xu +3 位作者 Zhirui Fan Zunyi Duan Hongze Du Dongling Geng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1179-1196,共18页
This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume const... This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume constraint.To explicitly express the configuration evolution in the structural topology optimization under combination of mechanical and thermal load conditions,the moving morphable components(MMC)framework is adopted.Based on the characteristics of the MMC framework,the number of design variables can be reduced substantially.Corresponding optimization formulation in the MMC topology optimization framework and numerical solution procedures are developed for several numerical examples.Different optimization results are obtained with structural compliance and elastic strain energy as objectives,respectively,for thermoelastic problems.The effectiveness of the proposed optimization formulation is validated by the numerical examples.It is revealed that for the optimization design of the thermoelastic structural strength,the objective function with the minimum structural strain energy can achieve a better performance than that from structural compliance design. 展开更多
关键词 Thermoelastic structure topology optimization moving morphable components minimum structural compliance minimum strain energy
在线阅读 下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
2
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle structural compliance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部