期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
被引量:
1
1
作者
胡启国
李致明
《华侨大学学报(自然科学版)》
CAS
2022年第3期291-296,共6页
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的B...
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的BP神经网络弱预测器函数迭代训练,形成MEA-AdaBoost-BP神经网络算法模型强预测器函数.最后,利用逼近隐性功能函数求解可靠性指标,并将其与AdaBoost-BP算法和Monte-Carlo算法进行比较.研究结果表明:所提算法在计算中与Monte-Carlo算法相比,其迭代次数分别仅为16次和46次,效率高,计算精度与Monte-Carlo法接近;而和AdaBoost-BP法相比,其可靠性指标误差分别仅为1.59%和1.88%,计算结果更精确.
展开更多
关键词
可靠性指标
思维进化算法(MEA)
AdaBoost-BP神经网络
MEA-AdaBoost-BP算法
强预测器函数
在线阅读
下载PDF
职称材料
基于可变基函数和GentleAdaBoost的小波神经网络研究
被引量:
4
2
作者
李翔
朱全银
王尊
《山东大学学报(工学版)》
CAS
北大核心
2013年第5期31-38,共8页
针对传统小波神经网络(wavelet neural network,WNN)受隐含层节点数影响大、网络误差易陷入局部极小、预测结果不稳定的问题,提出使用GentleAdaBoost和小波神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行...
针对传统小波神经网络(wavelet neural network,WNN)受隐含层节点数影响大、网络误差易陷入局部极小、预测结果不稳定的问题,提出使用GentleAdaBoost和小波神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行预处理并初始化测试数据分布权值;然后通过选取不同的隐含层节点数、小波基函数构造出不同类型的小波神经网络弱预测器序列并对样本数据进行反复训练;最后使用GentleAdaBoost算法将得到的多个小波神经网络弱预测器组成新的强预测器并进行回归预测。对UCI数据库中数据集进行仿真实验,结果表明,本方法比传统小波神经网络预测平均误差减少40%以上,有效地提高了神经网络预测精度,为小波神经网络应用提供借鉴。
展开更多
关键词
小波神经网络
基函数
迭代算法
GentleAdaBoost算法
强预测器
回归预测
原文传递
题名
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
被引量:
1
1
作者
胡启国
李致明
机构
重庆交通大学机电与车辆工程学院
出处
《华侨大学学报(自然科学版)》
CAS
2022年第3期291-296,共6页
基金
国家自然科学基金资助项目(51375519)
重庆市基础科学与前沿技术研究专项(cstc2015jcyjBX0133)。
文摘
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的BP神经网络弱预测器函数迭代训练,形成MEA-AdaBoost-BP神经网络算法模型强预测器函数.最后,利用逼近隐性功能函数求解可靠性指标,并将其与AdaBoost-BP算法和Monte-Carlo算法进行比较.研究结果表明:所提算法在计算中与Monte-Carlo算法相比,其迭代次数分别仅为16次和46次,效率高,计算精度与Monte-Carlo法接近;而和AdaBoost-BP法相比,其可靠性指标误差分别仅为1.59%和1.88%,计算结果更精确.
关键词
可靠性指标
思维进化算法(MEA)
AdaBoost-BP神经网络
MEA-AdaBoost-BP算法
强预测器函数
Keywords
reliability index
mind evolutionary algorithm(MEA)
AdaBoost-BP neural network
MEA-AdaBoost-BP algorithm
strong predictor function
分类号
TB114.3 [理学—概率论与数理统计]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于可变基函数和GentleAdaBoost的小波神经网络研究
被引量:
4
2
作者
李翔
朱全银
王尊
机构
淮阴工学院计算机工程学院
南京理工大学电子工程与光电技术学院
出处
《山东大学学报(工学版)》
CAS
北大核心
2013年第5期31-38,共8页
基金
国家星火计划资助项目(2011GA690190)
江苏省属高校自然科学重大基础研究资助项目(11KJA460001)
文摘
针对传统小波神经网络(wavelet neural network,WNN)受隐含层节点数影响大、网络误差易陷入局部极小、预测结果不稳定的问题,提出使用GentleAdaBoost和小波神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行预处理并初始化测试数据分布权值;然后通过选取不同的隐含层节点数、小波基函数构造出不同类型的小波神经网络弱预测器序列并对样本数据进行反复训练;最后使用GentleAdaBoost算法将得到的多个小波神经网络弱预测器组成新的强预测器并进行回归预测。对UCI数据库中数据集进行仿真实验,结果表明,本方法比传统小波神经网络预测平均误差减少40%以上,有效地提高了神经网络预测精度,为小波神经网络应用提供借鉴。
关键词
小波神经网络
基函数
迭代算法
GentleAdaBoost算法
强预测器
回归预测
Keywords
wavelet neural network
basis
function
s
iterative algorithm
Gentle AdaBoost algorithm
strong
predictor
regression forecasting
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
胡启国
李致明
《华侨大学学报(自然科学版)》
CAS
2022
1
在线阅读
下载PDF
职称材料
2
基于可变基函数和GentleAdaBoost的小波神经网络研究
李翔
朱全银
王尊
《山东大学学报(工学版)》
CAS
北大核心
2013
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部