Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin...Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.展开更多
Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurre...Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.展开更多
A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the in...A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which on- ly the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones’ intensity can be obvi- ously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.展开更多
With the development of accelerograph, strong ground motion data can be widely applied to many fields. Especially, it is an important milestone for strong motion observation to expand application fields into earthquak...With the development of accelerograph, strong ground motion data can be widely applied to many fields. Especially, it is an important milestone for strong motion observation to expand application fields into earthquake monitoring that real-time simulation of ground displacement can be obtained by strong motion records for determining three earthquake parameters. For the purpose of application, on the basis of principle of seismic response of single-degree-of-freedom (SDOF) system, this paper presents a suit of formula of simulating ground displacement records by using strong ground motion records with the help of simulator of SDOF system. The research results show that the technique is very efficient and can be widely applied to earthquake monitoring.展开更多
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi...This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.展开更多
基金Heilongjiang Province Postdoctoral Science Foundation and China Earthquake Administration’s Tenth Five-year Plan Project
文摘Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.
基金the support of National Natural Science Foundation of China(Grant Numbers 52192675 and 52378541)。
文摘Researching and comprehending the characteristics of destructive seismic motions is essential for the seismic design of critical infrastructure.This study employs historical data from the M 7.5 earthquake that occurred in 1850 to simulate the impacts of a M 7.5 event on hydropower stations located in proximity to Xichang.Key factors taken into account in the simulation of seismic motion encompass uncertainties,mixed-source models,and the placement of asperities.Through these simulations,we acquired the peak ground acceleration(PGA),acceleration time histories,and acceleration response spectra for the hydropower facilities affected by the earthquake.To perform a comprehensive analysis,we utilized a multi-scenario stochastic finite fault simulation method to estimate parameters including the minimum,average,and maximum values of PGA and pseudo-spectral acceleration(PSA)response spectra.Additionally,we assessed the 50^(th),84^(th),and 95^(th)percentiles values of the peak ground acceleration and pseudo-spectral acceleration response spectra.The simulation results also include peak ground acceleration field maps and peak ground velocity(PGV)field maps and intensity distribution maps pertaining to the earthquake.The findings demonstrate that the intensity maps produced through the stochastic finite fault method closely correspond with the intensity contour maps published of historical seismic records.These findings offer significant insights for the seismic safety evaluation and design of the specified hydropower stations.Moreover,this multi-scenario methodology can be effectively utilized for other critical infrastructure projects to derive dependable seismic motion parameters.
文摘A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which on- ly the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones’ intensity can be obvi- ously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.
基金National Nature Science Foundation of China (50378086) Commonweal Foundation of the Ministry of Science and+1 种基金Technology (2003DIB2J099) key project of China EarthquakeAdministrationduring the tenth Five-year Plan.
文摘With the development of accelerograph, strong ground motion data can be widely applied to many fields. Especially, it is an important milestone for strong motion observation to expand application fields into earthquake monitoring that real-time simulation of ground displacement can be obtained by strong motion records for determining three earthquake parameters. For the purpose of application, on the basis of principle of seismic response of single-degree-of-freedom (SDOF) system, this paper presents a suit of formula of simulating ground displacement records by using strong ground motion records with the help of simulator of SDOF system. The research results show that the technique is very efficient and can be widely applied to earthquake monitoring.
文摘This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.