Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>...Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.展开更多
Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimens...Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.展开更多
Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model i...Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-ze...Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.展开更多
Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large...Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.展开更多
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen...Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.展开更多
The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this...The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this methodology is its application to nuclear structure calculations.We developed an FCIQMC approach to study nuclear systems.To validate this method,we applied FCIQMC to a small model space,where the standard shell model remains computationally feasible.Specifically,we performed calculations for?ωisotopes using pf-shell GXPF1A interaction and compared the results with those obtained from the standard shell model calculations.To further demonstrate the capabilities of the FCIQMC,we investigated its performance in systems exhibiting strong correlations,where conventional nuclear structure models are less effective.Using an artificially constructed strongly correlated system with a modified GXPF1A interaction,our calculations revealed that FCIQMC delivered superior results compared to many existing methods.Finally,we applied FCIQMC to Fe isotopes in the sdpf-shell model space,showing its potential to perform accurate calculations in large model spaces that are inaccessible to the shell model because of the limitations of current computational resources.展开更多
Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interacti...Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.展开更多
Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicall...Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.展开更多
In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using...In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using PF-LAPW method within the density functional theory. Structural properties of these intermetallics were investigated by treating the exchange-correlation potential with the GGA-PBE, GGA-PBEsol and GGA + U. The effectiveness of the U for the structural properties as compared to other methods confirms the strong correlated nature of these compounds and the calculated lattice constants endorse the divalency of Yb. The results demonstrate the stable cubic CsCl structure of these compounds. Bulk modulus, Young's modulus, shear modulus, B/G ratio, Cauchy pressure, Poisson's ratio, anisotropic ratio,Kleinman parameters and Lame's coefficients were studied using the PBEsol to evaluate their importance in various types of engineering applications. The most prominent features of these compounds are their ductility, very high melting points, resistance to corrosion, and anisotropic nature.展开更多
We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for ...We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Cal-=Sr=VOa, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mort-insulator phase.展开更多
Understanding how electrons form pairs in the presence of strong electron correlations demands going beyond the BCS paradigm.We study a correlated superconducting model where the correlation effects are accounted for ...Understanding how electrons form pairs in the presence of strong electron correlations demands going beyond the BCS paradigm.We study a correlated superconducting model where the correlation effects are accounted for by a U term local in momentum space.The electron correlation is treated exactly while the electron pairing is treated approximately using the mean-field theory.The self-consistent equation for the pair potential is derived and solved.Somewhat contrary to expectation,a weak attractive U comparable to the pair potential can destroy the superconductivity,whereas for weak to intermediate repulsive U,the pair potential can be enhanced.The fidelity of the mean-field ground state is calculated to describe the strength of the elelectron correlation.We show that the pair potential is not equal to the single-electron superconducting gap for the strongly correlated superconductors,in contrast to the uncorrelated BCS limit.展开更多
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor...Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.展开更多
Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivi...Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivity can persist up to 400 K at ambient pressure.Despite the experimental im-plication,the electronic structure of LK-99 has not yet been studied.Here,we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations,aiming to elucidate the doping effects of Cu.Our results reveal that the parent compound Pb_(10)(PO_(4))_(6)O is an insulator,while Cu doping induces an insulator-metal transition and thus volume contraction.The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band.These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms.Interestingly,we observe four van Hove singularities on these two flat bands.Furthermore,we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements.We find that among the considered doping elements(Ni,Cu,Zn,Ag,and Au),both Ni and Zn doping result in the gap opening,whereas Au exhibits doping effects more similar to Cu than Ag.Our work establishes a foundation for fu-ture studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
Trilayer Ruddlesden-Popper phase La_(4)Ni_(3)O_(10) has been observed with T_(c) of~30 K at high pressure in a recent experiment,which further expanded the family of nickelate superconductors.In this study,we explored...Trilayer Ruddlesden-Popper phase La_(4)Ni_(3)O_(10) has been observed with T_(c) of~30 K at high pressure in a recent experiment,which further expanded the family of nickelate superconductors.In this study,we explored the effects of electronic correlations in La_(4)Ni_(3)O_(10) using density functional theory plus dynamical mean-field theory at ambient and high pressures.Our derived spectral functions and Fermi surface of the ambient pressure phase are nicely consistent with the experimental results by angleresolved photoemission spectroscopy,which emphasized the importance of electronic correlations in La_(4)Ni_(3)O_(10).We also found the electronic correlations in pressurized La_(4)Ni_(3)O_(10) are both orbital-dependent and layer-dependent due to the presence of Hund’s rule coupling.There is a competition between the Hund’s rule coupling and the crystal-field splitting,and therefore,the Ni-O layers with weaker crystal-field splitting energy would have stronger electronic correlations.展开更多
The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within t...The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within the generalized gradient approximation (GGA) and the GGA plus Hubbard U approaches (GGA + U). The calculated theoretical structures are in good agreement with the experimental values. The T-phase is found to be antiferromagnetic (AFM) and the AFM O-phase is more stable than the T-phase, which also agree with the experiments. On these bases, the single-crystal elastic constants (Cijs) and elastic properties of polycrystalline aggregates are investigated for the two phases. Our elasticity calculations indicate Ca3Mn2O7 is mechanically stable against volume expansions. The AFM O-phase is found to be a ductile material, while the AFM T-phase shows brittle nature and tends to be elastically isotropic. We also investigate the influence of strong correlation effects on the elastic properties, qualitatively consistent results are obtained in a reasonable range of values of U. Finally, the ionicity is discussed by Bader analysis. Our work provides useful guidance for the experimental elasticity measurements of Ca3Mn2O7, and makes the strain energy calculation in multiferroic Ca3Mn2O7 thin films possible.展开更多
Pu can be loaded with H forming complicated continuous solid solutions and compounds,and causing remarkable electronic and structural changes.Full potential linearized augmented plane wave methods combined with Hubbar...Pu can be loaded with H forming complicated continuous solid solutions and compounds,and causing remarkable electronic and structural changes.Full potential linearized augmented plane wave methods combined with Hubbard parameter U and the spin-orbit effects are employed to investigate the electronic and structural properties of stoichiometric and non-stoichiometric face-centered cubic Pu hydrides(PuHx,x=2,2.25,2.5,2.75,3).The decreasing trend with increasing x of the calculated lattice parameters is in reasonable agreement with the experimental findings.A comparative analysis of the electronic-structure results for a series of PuH x compositions reveals that the lattice contraction results from the associated effects of the enhanced chemical bonding and the size effects involving the interstitial atoms.We find that the size effects are the driving force for the abnormal lattice contraction.展开更多
文摘Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.
基金support from the National Natural Science Foundation of China(Grant No.12274087)Shanghai Science and Technology Development Funds(Grant No.22QA1400600)+2 种基金support from the National Key R&D Program of China(Grant No.2018YFA0305600)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)Shanghai Municipal Science and Technology Commission(Grant No.2019SHZDZX01)。
文摘Since the discovery of graphene,the development of two-dimensional material research has enabled the exploration of a rich variety of exotic quantum phenomena that are not accessible in bulk materials.These two-dimensional materials offer a unique platform to build novel quantum devices.Layered transition metal dichalcogenides,when thinned down to atomic thicknesses,exhibit intriguing physical properties such as strong electron correlations.The study of strongly-correlated phenomena in twodimensional transition metal dichalcogenides has been a major research frontier in condensed matter physics.In this article,we review recent progress on strongly-correlated phenomena in two-dimensional transition metal dichalcogenides,including Mott insulators,quantum spin liquids,and Wigner crystals.These topics represent a rapidly developing research area,where tremendous opportunities exist in discovering exotic quantum phenomena,and in exploring their applications for future electronic devices.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774152)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y1100088)the Founding of Zhejiang Ocean University
文摘Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金supported by the Ministry of Science and Technology(Grant No.2022YFA1403901)the National Natural Science Foundation of China(Grant Nos.12494594,11888101,12174428,and 12504192)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the New Cornerstone Investigator Program,the Chinese Academy of Sciences through the Youth Innovation Promotion Association(Grant No.2022YSBR-048)the Shanghai Science and Technology Innovation Action Plan(Grant No.24LZ1400800).
文摘Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.
基金supported by Shandong Provincial Nat-ural Science Foundation(ZR2024ZD30)the National Natural Science Foundation of China(Nos.22325302 and 22403100).
文摘Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0307800)the National Natural Science Foundation of China (Grant No. 12074377)+2 种基金Fundamental Research Funds for the Central Universities,the International Partnership Program of Chinese Academy of Sciences (Grant No. 211211KYSB20210007)the China Postdoctoral Science Foundation (Grant No. 2024M753465)the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20241893)。
文摘Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.
基金supported by the National Key R&D Program of China(Nos.2024YFA1610900,2023YFA1606401,and 2023YFA1606403)the National Natural Science Foundation of China(Nos.12335007,12035001 and 12205340)。
文摘The full configuration interaction quantum Monte Carlo(FCIQMC)method,originally developed in quantum chemistry,has also been successful for both molecular and condensed matter systems.Another natural extension of this methodology is its application to nuclear structure calculations.We developed an FCIQMC approach to study nuclear systems.To validate this method,we applied FCIQMC to a small model space,where the standard shell model remains computationally feasible.Specifically,we performed calculations for?ωisotopes using pf-shell GXPF1A interaction and compared the results with those obtained from the standard shell model calculations.To further demonstrate the capabilities of the FCIQMC,we investigated its performance in systems exhibiting strong correlations,where conventional nuclear structure models are less effective.Using an artificially constructed strongly correlated system with a modified GXPF1A interaction,our calculations revealed that FCIQMC delivered superior results compared to many existing methods.Finally,we applied FCIQMC to Fe isotopes in the sdpf-shell model space,showing its potential to perform accurate calculations in large model spaces that are inaccessible to the shell model because of the limitations of current computational resources.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CBA01603,2016YFA0300600,and 2016YFA0300903)the National Natural Science Foundation of China(Grant Nos.11574005,11774009,11222436,and 11574283)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX201700012)funded by China Postdoctoral Science Foundation.
文摘Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA1408400 and 2021YFA1400401)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 52271238)+2 种基金the China Postdoctoral Science Foundation(Grant No.2025M770186)the Center for Materials Genome,and the Synergetic Extreme Condition User Facility(SECUF)supported by the AI-driven experiments,simulations and model training on the robotic AI-Scientist platform from Chinese Academy of Sciences and the Research Funds for the Central Universities(Grant No.N25ZLE007).
文摘Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.
基金Project supported by the Higher Education Commission of Pakistan(HEC)(20-3959/NRPU/R&D/HEC2014/119)
文摘In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using PF-LAPW method within the density functional theory. Structural properties of these intermetallics were investigated by treating the exchange-correlation potential with the GGA-PBE, GGA-PBEsol and GGA + U. The effectiveness of the U for the structural properties as compared to other methods confirms the strong correlated nature of these compounds and the calculated lattice constants endorse the divalency of Yb. The results demonstrate the stable cubic CsCl structure of these compounds. Bulk modulus, Young's modulus, shear modulus, B/G ratio, Cauchy pressure, Poisson's ratio, anisotropic ratio,Kleinman parameters and Lame's coefficients were studied using the PBEsol to evaluate their importance in various types of engineering applications. The most prominent features of these compounds are their ductility, very high melting points, resistance to corrosion, and anisotropic nature.
基金Project supported by the National Natural Science Foundation of China (Grant No.10947001)
文摘We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Cal-=Sr=VOa, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mort-insulator phase.
基金supported by the National Natural Science Foundation of China(Grant No.11274379)the Research Funds of Renmin University of China(Grant No.14XNLQ07)。
文摘Understanding how electrons form pairs in the presence of strong electron correlations demands going beyond the BCS paradigm.We study a correlated superconducting model where the correlation effects are accounted for by a U term local in momentum space.The electron correlation is treated exactly while the electron pairing is treated approximately using the mean-field theory.The self-consistent equation for the pair potential is derived and solved.Somewhat contrary to expectation,a weak attractive U comparable to the pair potential can destroy the superconductivity,whereas for weak to intermediate repulsive U,the pair potential can be enhanced.The fidelity of the mean-field ground state is calculated to describe the strength of the elelectron correlation.We show that the pair potential is not equal to the single-electron superconducting gap for the strongly correlated superconductors,in contrast to the uncorrelated BCS limit.
文摘Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.
文摘Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivity can persist up to 400 K at ambient pressure.Despite the experimental im-plication,the electronic structure of LK-99 has not yet been studied.Here,we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations,aiming to elucidate the doping effects of Cu.Our results reveal that the parent compound Pb_(10)(PO_(4))_(6)O is an insulator,while Cu doping induces an insulator-metal transition and thus volume contraction.The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band.These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms.Interestingly,we observe four van Hove singularities on these two flat bands.Furthermore,we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements.We find that among the considered doping elements(Ni,Cu,Zn,Ag,and Au),both Ni and Zn doping result in the gap opening,whereas Au exhibits doping effects more similar to Cu than Ag.Our work establishes a foundation for fu-ture studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122405,52072188,and 12274169)the National Key R&D Program of China(Grant Nos.2022YFA1402304,and 2023YFA1406200)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.xzy022023011,and xhj032021014-04)the Program for Science and Technology Innovation Team in Zhejiang(Grant No.2021R01004).
文摘Trilayer Ruddlesden-Popper phase La_(4)Ni_(3)O_(10) has been observed with T_(c) of~30 K at high pressure in a recent experiment,which further expanded the family of nickelate superconductors.In this study,we explored the effects of electronic correlations in La_(4)Ni_(3)O_(10) using density functional theory plus dynamical mean-field theory at ambient and high pressures.Our derived spectral functions and Fermi surface of the ambient pressure phase are nicely consistent with the experimental results by angleresolved photoemission spectroscopy,which emphasized the importance of electronic correlations in La_(4)Ni_(3)O_(10).We also found the electronic correlations in pressurized La_(4)Ni_(3)O_(10) are both orbital-dependent and layer-dependent due to the presence of Hund’s rule coupling.There is a competition between the Hund’s rule coupling and the crystal-field splitting,and therefore,the Ni-O layers with weaker crystal-field splitting energy would have stronger electronic correlations.
基金supported by the National Natural Science Foundation of China (Grant No. 11175087)the Project of Graduate Students’ Education and Innovation Foundation of Jiangsu Province,China (Grant No. CXZZ12 0388)
文摘The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within the generalized gradient approximation (GGA) and the GGA plus Hubbard U approaches (GGA + U). The calculated theoretical structures are in good agreement with the experimental values. The T-phase is found to be antiferromagnetic (AFM) and the AFM O-phase is more stable than the T-phase, which also agree with the experiments. On these bases, the single-crystal elastic constants (Cijs) and elastic properties of polycrystalline aggregates are investigated for the two phases. Our elasticity calculations indicate Ca3Mn2O7 is mechanically stable against volume expansions. The AFM O-phase is found to be a ductile material, while the AFM T-phase shows brittle nature and tends to be elastically isotropic. We also investigate the influence of strong correlation effects on the elastic properties, qualitatively consistent results are obtained in a reasonable range of values of U. Finally, the ionicity is discussed by Bader analysis. Our work provides useful guidance for the experimental elasticity measurements of Ca3Mn2O7, and makes the strain energy calculation in multiferroic Ca3Mn2O7 thin films possible.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20971114)
文摘Pu can be loaded with H forming complicated continuous solid solutions and compounds,and causing remarkable electronic and structural changes.Full potential linearized augmented plane wave methods combined with Hubbard parameter U and the spin-orbit effects are employed to investigate the electronic and structural properties of stoichiometric and non-stoichiometric face-centered cubic Pu hydrides(PuHx,x=2,2.25,2.5,2.75,3).The decreasing trend with increasing x of the calculated lattice parameters is in reasonable agreement with the experimental findings.A comparative analysis of the electronic-structure results for a series of PuH x compositions reveals that the lattice contraction results from the associated effects of the enhanced chemical bonding and the size effects involving the interstitial atoms.We find that the size effects are the driving force for the abnormal lattice contraction.