Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid ...Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid dynamics.In this study,an axisymmetric adaptive multiresolution smooth particle hydrodynamics(SPH)model is proposed to solve various strongly compressible multiphase flow problems.In the present model,the governing equations are discretized in cylindrical polar coordinates,and an improved volume adaptive scheme is developed to better solve the problem of excessive volume change in strongly compressible multiphase flows.On this basis,combined with the adaptive particle refinement technique,an adaptive multiresolution scheme is proposed in this study.In addition,the high-order differential operator and diffusion correction term are utilized to improve the accuracy and stability.The effectiveness of the model is verified by testing four typical strongly compressible multiphase flow problems.By comparing the results of adaptive multiresolution SPH with other numerical results or experimental data,we can conclude that the present SPH method effectively models strongly compressible multiphase flows.展开更多
基金Supported by the Guangxi Natural Science Foundation(Grant No.2021GXNSFBA196008)the Guangxi Science and Technology Development Program(Grant No.GuikeAD22035189).
文摘Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid dynamics.In this study,an axisymmetric adaptive multiresolution smooth particle hydrodynamics(SPH)model is proposed to solve various strongly compressible multiphase flow problems.In the present model,the governing equations are discretized in cylindrical polar coordinates,and an improved volume adaptive scheme is developed to better solve the problem of excessive volume change in strongly compressible multiphase flows.On this basis,combined with the adaptive particle refinement technique,an adaptive multiresolution scheme is proposed in this study.In addition,the high-order differential operator and diffusion correction term are utilized to improve the accuracy and stability.The effectiveness of the model is verified by testing four typical strongly compressible multiphase flow problems.By comparing the results of adaptive multiresolution SPH with other numerical results or experimental data,we can conclude that the present SPH method effectively models strongly compressible multiphase flows.