期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Anti-inflammatory potential of human corneal stroma-derived stem cells determined by a novel in vitro corneal epithelial injury model 被引量:2
1
作者 Mariana Lizeth Orozco Morales Nagi M Marsit +2 位作者 Owen D McIntosh Andrew Hopkinson Laura E Sidney 《World Journal of Stem Cells》 SCIE CAS 2019年第2期84-99,共16页
BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic ... BACKGROUND An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells(hCEC).AIM To investigate whether corneal-stroma derived stem cells(CSSC) seeded on an amniotic membrane(AM) construct manifests an anti-inflammatory, healing response.METHODS Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20%(v/v) ethanol for 30 s with 1 ng/mL interleukin-1(IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs.The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1 B, TNF, IL6, and CXCL8 mRNA expression were assessed.RESULTS Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface.CONCLUSION CSSC were shown to have a potentially therapeutic anti-inflammatory effectwhen treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes. 展开更多
关键词 Cornea Corneal injuries Injury model Corneal epithelium Corneal stroma-derived stem cells AMNION ANTI-INFLAMMATORY Cell therapy
暂未订购
Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment 被引量:2
2
作者 Xian-Ning Liu Sheng-Li Mi +1 位作者 Yun Chen Yao Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第3期448-455,共8页
Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidire... Corneal stroma-derived mesenchymal stem cells(CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells(LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed. 展开更多
关键词 corneal stroma-derived mesenchymal stem cells bioactive cornea corneal limbus tissue-engineered active biocornea stromal microenvironment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部