期刊文献+
共找到8,797篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing structural and thermal stability of ultrahigh-Ni cathodes via anion-cation codoping induced surface reconstruction strategy
1
作者 Haoyu Wang Jinyang Dong +9 位作者 Hongyun Zhang Jinzhong Liu Yun Lu Yun Liu Xi Wang Ning Li Qing Huang Feng Wu Yuefeng Su Lai Chen 《Journal of Energy Chemistry》 2025年第7期9-19,共11页
The rapid expansion of the automotive sector has significantly increased the demand for highperformance lithium-ion batteries,positioning Ni-rich layered cathodes as a promising solution due to their high energy densi... The rapid expansion of the automotive sector has significantly increased the demand for highperformance lithium-ion batteries,positioning Ni-rich layered cathodes as a promising solution due to their high energy density and cost-efficiency.However,these cathodes face critical challenges,including thermal instability and structural degradation at an elevated temperature,which hinder their practical application.This study introduces an advanced surface reconstruction strategy combining a LiScF_(4)coating,Sc/F surface co-doping,and a cation-mixing layer to address these issues.The LiScF_(4)coating serves as a durable protective barrier,reducing electrolyte decomposition,minimizing transition metal dissolution,and enhancing lithium-ion transport.Sc/F surface co-doping stabilizes lattice oxygen by increasing the energy barrier for oxygen vacancy formation and minimizing oxygen release,thereby suppressing phase transitions and interfacial side reactions.Additionally,the cation-mixing layer improves interfacial stability by alleviating lattice strain and supporting reversible cation migration,ensuring prolonged durability during cycling and under high-temperature conditions.These integrated modifications work synergistically to mitigate various degradation mechanisms,significantly improving the thermal stability,structural integrity,and electrochemical performance of Ni-rich cathodes.This approach offers a viable pathway for incorporating Ni-rich cathodes into advanced lithium-ion batteries,making them well-suited for applications requiring high thermal stability.Moreover,this research provides valuable guidance for the development of a multi-component modification strategy,paving the way for future innovations in energy storage materials and advancing high-performance battery technology. 展开更多
关键词 Lithium-ion batteries Ultrahigh-nickel layered cathodes Codoping-induced surface reconstruction Cycling performance structure and thermal stability
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
2
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Synergistic surface restructuring and cation mixing via ultrafast Joule heating enhancing ultrahigh-nickel cathodes for advanced lithium-ion batteries 被引量:1
3
作者 Haoyu Wang Jinyang Dong +10 位作者 Meng Wang Yun Lu Hongyun Zhang Jinzhong Liu Yun Liu Na Liu Ning Li Qing Huang Feng Wu Yuefeng Su Lai Chen 《Journal of Energy Chemistry》 2025年第4期371-382,共12页
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur... The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs). 展开更多
关键词 Lithium-ion batteries Ultrahigh-nickel layered cathodes In situ surface doping Cation mixing layer structure and thermal stability
在线阅读 下载PDF
Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance 被引量:2
4
作者 Ming-Lu Huang Cheng-Long Luo +3 位作者 Chang Sun Kun-Yan Zhao Yingqing Ou Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期201-209,共9页
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs... Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP. 展开更多
关键词 Microwave absorption Carbonyl iron powder ANTI-OXIDATION Interfacial polarization surface structural engineering
原文传递
Changing the pore structure and surface chemistry of hard carbon by coating it with a soft carbon to boost high-rate sodium storage
5
作者 ZHONG Qin MO Ying +9 位作者 ZHOU Wang ZHENG Biao WU Jian-fang LIU Guo-ku Mohd Zieauddin Kufian Zurina Osman XU Xiong-wen GAO Peng YANG Le-zhi LIU Ji-lei 《新型炭材料(中英文)》 北大核心 2025年第3期651-665,共15页
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi... Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability. 展开更多
关键词 Hard carbon Pitch-derived carbon coating Sodium-ion batteries Pore structure surface chemistry
在线阅读 下载PDF
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces 被引量:1
6
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
在线阅读 下载PDF
Review of the structural properties and interfacial reactions of Al-substituted goethite,hematite and ferrihydrite
7
作者 Yu LIANG Hongfeng CHEN +2 位作者 Jinling XU Mingxia WANG Wenfeng TAN 《Pedosphere》 2025年第1期42-52,共11页
Isomorphic substitution of ferric ion(Fe~(3+))by aluminum ion(Al~(3+))in iron(hydro)oxides is ubiquitous in natural environments.Aluminum substitution inevitably leads to changes in the microstructures,physicochemical... Isomorphic substitution of ferric ion(Fe~(3+))by aluminum ion(Al~(3+))in iron(hydro)oxides is ubiquitous in natural environments.Aluminum substitution inevitably leads to changes in the microstructures,physicochemical properties,and surface reactions of iron(hydro)oxides,which may have great impacts on the sequestration of nutrients and contaminants in soils and aquatic environments.Over the past decades,the structural properties and surface reactivity of Al-substituted iron(hydro)oxides have been intensively studied.Iron(hydro)oxides in various structural forms and with different Al substitution amounts present high application potentials in addressing environmental issues.A timely summary of the structural properties and interfacial reactions of the most common and representative Al-substituted iron(hydro)oxides is of significance.Herein,the effects of Al substitution on the structural properties and surface activities of iron(hydro)oxides were clarified according to the microstructure,crystal facets,surface site type and density,interfacial reaction mechanisms,and modeling parameters of iron(hydro)oxides.This review systematically elucidates how Al substitution affects the structural properties and surface reactions of iron(hydro)oxides,including the well crystallized goethite and hematite and the poorly crystallized ferrihydrite,providing theoretical guidance for further exploration of the mineralogical characteristics and environmental geochemical behaviors of iron(hydro)oxides. 展开更多
关键词 adsorption defective structure iron(hydro)oxide isomorphic substitution surface active site surface charge behavior
原文传递
Ultra-thin dual color rendering mechanism structural coloration film with freeze-resistant and self-cleaning properties
8
作者 Xi-Di Sun Hao Li +6 位作者 Hui-Wen Yu Xin Guo Fan-Yu Wang Jia-Han Zhang Jing Wu Yi Shi Li-Jia Pan 《Rare Metals》 2025年第3期1813-1823,共11页
Localized manipulation of light interference and phase through surface microstructures provides new viable technologies for applications such as anti-counterfeiting,camouflage,high-density optical storage and display.... Localized manipulation of light interference and phase through surface microstructures provides new viable technologies for applications such as anti-counterfeiting,camouflage,high-density optical storage and display.However,the single-color rendering mechanism and the material’s intrinsic properties,such as hydrophilicity,low hardness and low melting point,limit the range of applications.In this paper,we propose a structural color based on ultrathin ZrO_(2)thin films,which presents a visible full-spectrum color display.The structural color coating has ultrahigh flame retardancy,super UV resistance,super surface hardness and resistance to acid and alkali corrosion.The use of two different color development mechanisms realizes the hiding of the quick response(QR)code in visible light.The modified film exhibits superhydrophobic properties,unique anti-icing and self-cleaning properties,and shows the material’s potential for camouflage,anti-counterfeiting,military,marine and aerospace applications. 展开更多
关键词 structural color ZrO_(2) Anodization Freezing resistance surface morphologies
原文传递
Layered Gradient-structured Coating with Sustained Lubricating Performance for the Surface Functionalization of Implant Materials
9
作者 Xiao-Bo Deng Hong-Xiu Wei +5 位作者 Lin Yang Feng Luo Zhen Li Hong Tan Yan-Chao Wang Jie-Hua Li 《Chinese Journal of Polymer Science》 2025年第6期1050-1058,I0013,共10页
Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior s... Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices. 展开更多
关键词 ZWITTERIONS Hierarchical structure surface modification Durable coating Lubricating and antibacterial coating
原文传递
Collaborative Improvement of Structure Shape and Surface Integrity in Titanium Alloy Hole Burnishing
10
作者 Jiahui Liu Pingfa Feng +3 位作者 Zibiao Wang Jianfu Zhang Feng Feng Xiangyu Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期186-205,共20页
In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and ... In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and surface integrity must be considered simultaneously during the enhancement process.The current manufacturing process of hole burnishing has a relatively weak balance between the structure shape and surface integrity;therefore,it is necessary to analyze the mechanism and optimize the parameters to improve the strengthening effect of the holes.In this study,a two-dimensional longitudinal simplified model for the hole burnishing process was established,and the reasons for the surface roughness improvement of the hole wall and material accumulation on the upper surface were analyzed.Experiments were conducted to determine the influence of the burnishing parameters on the structure shape(material accumulation,shape contour,and roundness)and surface integrity(surface roughness,residual stress,and surface hardness),based on the opposite requirements of improving the structure shape and surface integrity for the burnishing depth(BD).The results showed that with an increase in the BD,the structure shape deteriorated,whereas the surface integrity improved.Fatigue behavior verification experiments were conducted,and parameter selection schemes for the collaborative improvement of the structure shape and surface integrity were discussed.For the holes of titanium alloy TB6(Ti-10V-2Fe-3Al),the fatigue life can be increased by 162%when the BD,spindle speed,and feed rate were 0.20 mm,200 r/min,and 0.2 mm/r,respectively. 展开更多
关键词 Hole burnishing surface roughness Material accumulation structure shape Titanium alloy Fatigue life
在线阅读 下载PDF
Surface structure and their environment-dependent stability of NaMn_(2)O_(4)
11
作者 SUN Shun-ping SUN Hong-fei +2 位作者 WANG Yu-rui CHEN Li-yong JIANG Yong 《Journal of Central South University》 2025年第5期1697-1709,共13页
As cathode materials for alkali-ion batteries,sodium manganese oxides have been receiving considerable and continuous attention in recent decades.In this work,the structure and environment-dependent stability of NaMn_... As cathode materials for alkali-ion batteries,sodium manganese oxides have been receiving considerable and continuous attention in recent decades.In this work,the structure and environment-dependent stability of NaMn_(2)O_(4) surface were studied based on the first principles calculations.The surface stability diagram of NaMn_(2)O_(4) involving various different terminations of(100),(110)and(111)surfaces was constructed,and the stability of these different terminations could be compared as a function of chemical environment.It is found that the(100)-MnO and(111)-ONa terminations are two more stable terminations under the investigated chemical conditions.And the surface energies of(110)surfaces are negative under the investigated chemical potential,hence,(110)surfaces are unstable.The surface energy of NaMn_(2)O_(4) as a function of O chemical potential is also investigated under constant Na chemical potential.The structure relaxation indicates that the surface rumpling and surface reconstruction can affect the electronic structure of the surface,thereby reducing surface energy and stabilizing the surface.Furthermore,the Wulff shape of NaMn_(2)O_(4) was also constructed based on Gibbs-Wulff theorem. 展开更多
关键词 NaMn_(2)O_(4) first principles surfacE Wulff construction structure
在线阅读 下载PDF
Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage
12
作者 秦志辉 时东霞 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4580-4584,共5页
Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observe... Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage. 展开更多
关键词 scanning tunnelling microscopy surface structures Ge structural transition
原文传递
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:6
13
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
在线阅读 下载PDF
Surface Pressure Loading Technology of Ship Structures 被引量:2
14
作者 DAI Ze-yu WEI Peng-yu +3 位作者 CHEN Xiao-ping JIANG Ze CHEN Zhe TANG Qin 《船舶力学》 EI CSCD 北大核心 2024年第12期1940-1952,共13页
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co... A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system. 展开更多
关键词 surface pressure load loading system ship structure strength test flexible bladder
在线阅读 下载PDF
A Facile Li_(2)TiO_(3) Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides 被引量:2
15
作者 Naifang Hu Yuan Yang +5 位作者 Lin Li Yuhan Zhang Zhiwei Hu Lan Zhang Jun Ma Guanglei Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期41-48,共8页
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat... Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries. 展开更多
关键词 full concentration gradient lithium-rich layered oxides structure stability surface modification
在线阅读 下载PDF
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants 被引量:1
16
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
在线阅读 下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:14
17
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
在线阅读 下载PDF
An Intelligent Method for Structural Reliability Analysis Based on Response Surface 被引量:8
18
作者 桂劲松 刘红 康海贵 《海洋工程:英文版》 2004年第4期653-661,共9页
As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such... As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application. 展开更多
关键词 structural reliability fuzzy neural network genetic algorithm response surface method
在线阅读 下载PDF
An improved adaptive response surface method for structural reliability analysis 被引量:10
19
作者 刘霁 李云 《Journal of Central South University》 SCIE EI CAS 2012年第4期1148-1154,共7页
The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression... The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy. 展开更多
关键词 response surface structural reliability uniform design weighted regression
在线阅读 下载PDF
Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High‑Performance Zinc Anode:Principles,Strategies,and Challenges 被引量:6
20
作者 Yuxin Gong Bo Wang +4 位作者 Huaizheng Ren Deyu Li Dianlong Wang Huakun Liu Shixue Dou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期317-348,共32页
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th... The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs. 展开更多
关键词 Zinc anodes Current collectors surface modification structural design Crystal facet orientation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部