Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio...Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.展开更多
Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmen...Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.展开更多
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca...A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.展开更多
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a...The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)at...Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.展开更多
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l...To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.展开更多
We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pio...We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pion within the frame work of hadronic operator. To achieve this, we consider a slightly deformed curve deviating from a straight line and construct a set of differential equations by comparing them to the equation determining charged pion wave function in a straight line case. By solving these equations, we employ the Fourier transform of these wave functions.展开更多
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r...Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.展开更多
Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomi...Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.展开更多
This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and no...This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.展开更多
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser m...Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser melting.Their forming quality,compression mechanical properties,and degradation behavior were investigated.Results indicate that the fabricated scaffolds exhibit good dimensional accuracy,and the surface chemical polishing treatment significantly improves the forming quality and reduces porosity error in porous scaffolds.Compared to the ones with rod structures(bcc,RD),the scaffolds with surface structures(G,P)have less powder particle adhesion.The G porous scaffold exhibits the best forming quality for the same design porosity.The predominant failure mode of scaffolds during compression is a 45°shear fracture.At a porosity of 75%,the compression property of all scaffolds meets the compressive property requirements of cancellous bone,while bcc and G structures show relatively better compression property.After immersion in Hank's solution for 168 h,the B-2-75% pore structure scaffold exhibits severe localized corrosion,with fractures in partial pillar connections.In contrast,the G-3-75% pore structure scaffold mainly undergoes uniform corrosion,maintaining structural integrity,and its corrosion rate and loss of compressive properties are less than those of the B-2-75%structure.After comparison,the G-pore structure scaffold is preferred.展开更多
This study explores the variations in address forms within the Tinghu dialect of Yancheng city.The findings reveal that the ways individuals address one another in this region deviate from the established principles o...This study explores the variations in address forms within the Tinghu dialect of Yancheng city.The findings reveal that the ways individuals address one another in this region deviate from the established principles of tone sandhi theory.In Chinese phonology,it is generally assumed that individual characters serve as fundamental forms based on their standard pronunciations,with real-time pronunciations adapting to phonetic conditions.However,the study of address forms has not traditionally been integrated into this framework.Observations indicate that a wide range of addressing methods is employed in social interactions,reflecting the complexity of regional cultural traits and social dynamics.This research highlights the distinctive features of address forms in the Tinghu dialect,particularly in terms of tone sandhi,vocative expressions,and indirect address.By examining these unique characteristics,the study enhances our understanding of the principles governing tonal changes in Chinese.Furthermore,it offers valuable insights into the preservation and inheritance of regional dialects.展开更多
基金Key Research and Development Program of Shaanxi Province(2022GY-410)Funding of Western Titanium Technologies Co.,Ltd(WX2210)。
文摘Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.
基金supported by the National Key Research and Development Program of China(2023YFF0805602)National Natural Science Foundation of China(32225032,32001192,32271597)+1 种基金the Innovation Base Project of Gansu Province(2021YFF0703904)the Science and Technology Program of Gansu Province(24JRRA515,22JR5RA525,23JRRA1157).
文摘Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.
基金supported in part by financial support from the National Key R&D Program of China(No.2023YFB3407003)the National Natural Science Foundation of China(No.52375378).
文摘A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U1906233 and 52201312)Dalian High-Level Talent Innovation Program(Grant No.2021RD16)the Natural Science Foundation of Liaoning Province of China(Grant No.2023-BSBA-052).
文摘The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
文摘Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+1 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)。
文摘To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.
文摘We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pion within the frame work of hadronic operator. To achieve this, we consider a slightly deformed curve deviating from a straight line and construct a set of differential equations by comparing them to the equation determining charged pion wave function in a straight line case. By solving these equations, we employ the Fourier transform of these wave functions.
基金National Key Research and Development Program(2021YFB3401101)。
文摘Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.
基金Supported in part by the Natural Science Foundation of Henan Youth Foundation(Grant No.222300420034)National Natural Science Foundation of China(Grant No.11871193).
文摘Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61991400/61991403,61933012,62250710167,62203078)+2 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Central University Project(2023CDJKYJH047)the Innovation Support Program for International Students Returning to China(cx2022016)
文摘This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
基金Science and Technology Planning Project of Inner Mongolia Science and Technology Department(2022YFSH0021)Key Research and Development Program of Shaanxi Province(2024SF2-GJHX-14,2021SF-296)。
文摘Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser melting.Their forming quality,compression mechanical properties,and degradation behavior were investigated.Results indicate that the fabricated scaffolds exhibit good dimensional accuracy,and the surface chemical polishing treatment significantly improves the forming quality and reduces porosity error in porous scaffolds.Compared to the ones with rod structures(bcc,RD),the scaffolds with surface structures(G,P)have less powder particle adhesion.The G porous scaffold exhibits the best forming quality for the same design porosity.The predominant failure mode of scaffolds during compression is a 45°shear fracture.At a porosity of 75%,the compression property of all scaffolds meets the compressive property requirements of cancellous bone,while bcc and G structures show relatively better compression property.After immersion in Hank's solution for 168 h,the B-2-75% pore structure scaffold exhibits severe localized corrosion,with fractures in partial pillar connections.In contrast,the G-3-75% pore structure scaffold mainly undergoes uniform corrosion,maintaining structural integrity,and its corrosion rate and loss of compressive properties are less than those of the B-2-75%structure.After comparison,the G-pore structure scaffold is preferred.
文摘This study explores the variations in address forms within the Tinghu dialect of Yancheng city.The findings reveal that the ways individuals address one another in this region deviate from the established principles of tone sandhi theory.In Chinese phonology,it is generally assumed that individual characters serve as fundamental forms based on their standard pronunciations,with real-time pronunciations adapting to phonetic conditions.However,the study of address forms has not traditionally been integrated into this framework.Observations indicate that a wide range of addressing methods is employed in social interactions,reflecting the complexity of regional cultural traits and social dynamics.This research highlights the distinctive features of address forms in the Tinghu dialect,particularly in terms of tone sandhi,vocative expressions,and indirect address.By examining these unique characteristics,the study enhances our understanding of the principles governing tonal changes in Chinese.Furthermore,it offers valuable insights into the preservation and inheritance of regional dialects.