With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
Bionic hydrogels offer significant advantages over conventional counterparts,boasting superior properties like enhanced adhesion,stretchability,conductivity,biocompatibility and versatile functionalities.Their physico...Bionic hydrogels offer significant advantages over conventional counterparts,boasting superior properties like enhanced adhesion,stretchability,conductivity,biocompatibility and versatile functionalities.Their physicochemical resemblance to biological tissues makes bionic hydrogels ideal interfaces for bioelectronic devices.In contrast,conventional hydrogels often exhibit inadequate performance,such as easy detachment,lack of good skin compliance,and inadequate conductivity,failing to meet the rigorous demands of bioelectronic applications.Bionic hydrogels,inspired by biological designs,exhibit exceptional physicochemical characteristics that fulfill diverse criteria for bioelectronic applications,driving the advancement of bioelectronic devices.This review first introduces a variety of materials used in the fabrication of bionic hydrogels,including natural polymers,synthetic polymers,and other materials.Then different mechanisms of hydrogel bionics,are categorized into material bionics,structural bionics,and functional bionics based on their bionic approaches.Subsequently,various applications of bionic hydrogels in the field of bioelectronics were introduced,including physiological signal monitoring,tissue engineering,and human-machine interactions.Lastly,the current development and future prospects of bionic hydrogels in bioelectronic devices are summarized.Hopefully,this comprehensive review could inspire advancements in bionic hydrogels for applications in bioelectronic devices.展开更多
Intrinsic stretchability is a promising attribute of polymer organic solar cells(OSCs).However,rigid molecular blocks typically exhibit poor tensile properties,rendering polymers vulnerable to mechanical stress.In thi...Intrinsic stretchability is a promising attribute of polymer organic solar cells(OSCs).However,rigid molecular blocks typically exhibit poor tensile properties,rendering polymers vulnerable to mechanical stress.In this study,we introduce a different approach utilizing all-small-molecule donors and acceptors to fabricate stretchable OSCs.An elastomer,styrene-b-ethylene-butylene-styrene(SEBS),was embedded to modulate film crystallization and stretchability.SEBS effectively confines the growth process of donors and acceptors,leading to enhancement of the crystallization quality,thus contributing to enhanced device efficiencies.Meanwhile,SEBS can absorb and release mechanical stress during stretching,thereby preventing mechanical degradation of donors and acceptors.The mechanical properties of the OSCs were significantly improved by the incorporation of SEBS.Notably,the crack-onset strain increased from 1.03% to 5.99% with SEBS embedding.These findings present a straightforward strategy for achieving stretchable OSCs using all small molecules,offering a different perspective for realizing stretchable devices.展开更多
The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtl...The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature.展开更多
Flexible and stretchable energy storage devices are highly desirable for wearable electronics,particularly in the emerging fields of smart clothes,medical instruments,and stretchable skin.Lithium metal batteries(LMBs)...Flexible and stretchable energy storage devices are highly desirable for wearable electronics,particularly in the emerging fields of smart clothes,medical instruments,and stretchable skin.Lithium metal batteries(LMBs) with high power density and long cycle life are one of the ideal power sources for flexible and stretchable energy storage devices.However,the current LMBs are usually too rigid and bulky to meet the requirements of these devices.The electrolyte is the critical component that determines the energy density and security of flexible and stretchable LMBs.Among various electrolytes,gel polymer electrolytes(GPEs) perform excellent flexibility,safety,and high ionic conductivity compared with traditional liquid electrolytes and solid electrolytes,fulfilling the next generation deformable LMBs.This essay mainly reviews and highlights the recent progress in GPEs for flexible/stretchable LMBs and provides some useful insights for people interested in this field.Additionally,the multifunctional GPEs with self-healing,flame retardant,and temperature tolerance abilities are summarized.Finally,the perspectives and opportunities for flexible and stretchable GPEs are discussed.展开更多
As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydroge...As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydrogel strain sensors are still insufficient,such as the deterioration of electrical signals and low sensitivity,which need to develop a hydrogel with a stable transmission network for electric con-duction.Herein,a silk fibroin biocomposite hydrogel is prepared by incorporating tannic acid and MXene nanosheets into a polyacrylamide and silk fibroin double network.The electromechanical properties of hydrogels are improved by optimizing the proportion of material components.As a result,the double network structure and supramolecular interaction enhance the stretchability of hydrogels(692% fracture strain).The hydrogel also exhibits good biocompatibility and conductivity(0.85 S/m),which shows the application prospect in wearable sensors.The wireless strain sensor assembled by this biocomposite hy-drogel presents good portability and sensing performance,such as high sensitivity(gauge factor=6.04),wide working range(500% strain),and outstanding stability(1000 cycles at 100%strain).The results in-dicate that the hydrogel strain sensor can be used to monitor human body movement.The biocomposite hydrogel is expected to be applied in the field of wearable strain sensors,and this study can provide a new way for the design of flexible electronic materials.展开更多
Triboelectric nanogenerators(TENGs)are emerging as new technologies to harvest electrical power from mechanical energy.With the distinctive working mechanism of triboelectric nanogenerators,they attract particular int...Triboelectric nanogenerators(TENGs)are emerging as new technologies to harvest electrical power from mechanical energy.With the distinctive working mechanism of triboelectric nanogenerators,they attract particular interest in healthcare monitoring,wearable electronics,and deformable energy harvesting,which raises the requirement for highly conformable devices with substantial energy outputs.Here,a simple,low-cost strategy for fabricating stretchable triboelectric nanogenerators with ultra-high electrical output is developed.The TENG is prepared using PTFE micron particles(PPTENG),contributing a different electrostatic induction process compared to TENG based on dielectric films,which was associated with the dynamics of particle motions in PP-TENG.The generator achieved an impressive voltage output of 1000 V with a current of 25 lA over a contact area of 40320 mm^(2).Additionally,the TENG exhibits excellent durability with a stretching strain of 500%,and the electrical output performance does not show any significant degradation even after 3000 cycles at a strain of 400%.The unique design of the device provides high conformability and can be used as a self-powered sensor for human motion detection.展开更多
Stretchable conductive fibers are essential for the advancement of wearable electronic textiles.However,a significant challenge arises as their conductivity sharply decreases when stretched due to disruptions in elect...Stretchable conductive fibers are essential for the advancement of wearable electronic textiles.However,a significant challenge arises as their conductivity sharply decreases when stretched due to disruptions in electronic transport.Coating fibers with soft liquid metal(LM)has emerged as a promising solution.Despite this,there remains an urgent need to develop methods that enhance LM adhesion to substrates while facilitating efficient electron transport pathways.This study demonstrates a novel Ag-LM conductive network strategy for fabricating a thermoplastic polyurethane/polydopamine/silver-LM(TPU/PDA/Ag-LM)fiber membrane.This membrane exhibits outstanding stretchable electromagnetic interference(EMI)shielding performance and is produced through straightforward electrospinning,electroless depositing,and LM coating and activation.The TPU/PDA/Ag fiber membrane is initially prepared via polydopamineassisted deposition of silver nanoparticles(AgNPs)on electrospun TPU fibers.The presence of AgNPs on the surface of TPU/PDA fibers enhances LM adhesion to the substrate and bridges adjacent LM to establish efficient conductive paths.This interaction benefits from the reactive alloying between AgNPs and LM,where the LM infiltrates the gaps among AgNPs,forming a distinctive LM-Ag alloy layer that uniformly coats the surface of TPU fibers.As anticipated,the unique three-dimensional(3D)interconnected LM-Ag conductive network remains intact during stretching,ensuring strain-invariant conductivity.The fabricated TPU/PDA/Ag-LM fiber membrane demonstrates exceptional EMI shielding effectiveness(SE)of 77.4 dB within the frequency range of 8.2-12.8 GHz and maintains an excellent EMI SE of 37.2 dB under extensive tensile deformation of 300%.Furthermore,the TPU/PDA/Ag-LM fiber membrane shows remarkable mechanical properties and stable Joule heating performance even under significant stretching.展开更多
This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fi...This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.展开更多
The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-base...The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge.Herein,MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor.The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties(3150%),compliant mechanical strength(2.03 kPa^(-1)in Young’s Module)and long-lasting stability and fatigue resistance(1000 dynamic cycles under 1,600%strain).Due to the highly oriented MXene-based three dimensional conductive networks,the hydrogel sensor achieved extremely high tensile sensitivity(18.15 in gauge factor)and compression sensitivity(0.38 kPa^(-1)below 3 kPa).MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance,typical frequent-independent feature and rapid response time to external stimuli.Moreover,the sensor exhibited accurate response to different scales of human movements,providing potential application in speech recognition,expression recognition and handwriting verification.展开更多
Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped ...Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.展开更多
With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he...With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.展开更多
Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching...Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.展开更多
Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to devel...Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to develop thermoelectric materials with excellent stretchability,durable thermoelectric properties,wearable comfort,and multifunctional sensing properties simultaneously.Herein,an advanced preparation strategy combining electrospinning and spraying technology is proposed to prepare carbon nanotube(CNT)/polyvinyl pyrrolidone(PVP)/polyurethane(PU)composite thermoelectric fabrics that have high air permeability and stretchability(~250%)close to those of pure PU nanofiber fabrics.Furthermore,PVP can not only improve the dispersion of CNTs but also act as interfacial binders between the CNT and the elastic PU skeleton.Consequently,both the electrical conductivity and the Seebeck coefficient remain unchanged even after bending 1000 times.In addition,self-powered sensors for the mutual conversion of finger temperature and language and detection of the movement of joints to optimize an athlete's movement state were successfully fabricated.This study paves the way for stretchable thermoelectric fabrics with fascinating applications in smart wearable fields such as power generation,health monitoring,and human–computer interaction.展开更多
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the ente...Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.展开更多
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform...Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.展开更多
Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanic...Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanical bending or stretching,outstanding electronic/optoelectronic properties,good transparency,and excellent geometry.Herein,latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted.Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed.Finally,a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed.This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics.展开更多
Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic ...Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities,existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity.Here,an ultrasensitive,highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers.The bilayer sensor consists of an aligned carbon nanotube(CNT)array assembled on top of a periodically wrinkled and cracked CNT-graphene oxide film.The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched,leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100%strain.The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3,to the benefit of accurate detection of loading directions by the multidirectional sensor.This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity,selectivity,and stretchability,demonstrating promising applications in full-range,multi-axis human motion detection for wearable electronics and smart robotics.展开更多
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ...Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.展开更多
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
基金supported by the Scientific and Technological Project in Henan Province(242102231002)Henan Province Science and Technology Research and Development Program Joint Fund Advantageous Discipline Cultivation Project(No.232301420033)the Foundation for Outstanding Young Teachers in Universities of Henan Province(2021GGJS014).
文摘Bionic hydrogels offer significant advantages over conventional counterparts,boasting superior properties like enhanced adhesion,stretchability,conductivity,biocompatibility and versatile functionalities.Their physicochemical resemblance to biological tissues makes bionic hydrogels ideal interfaces for bioelectronic devices.In contrast,conventional hydrogels often exhibit inadequate performance,such as easy detachment,lack of good skin compliance,and inadequate conductivity,failing to meet the rigorous demands of bioelectronic applications.Bionic hydrogels,inspired by biological designs,exhibit exceptional physicochemical characteristics that fulfill diverse criteria for bioelectronic applications,driving the advancement of bioelectronic devices.This review first introduces a variety of materials used in the fabrication of bionic hydrogels,including natural polymers,synthetic polymers,and other materials.Then different mechanisms of hydrogel bionics,are categorized into material bionics,structural bionics,and functional bionics based on their bionic approaches.Subsequently,various applications of bionic hydrogels in the field of bioelectronics were introduced,including physiological signal monitoring,tissue engineering,and human-machine interactions.Lastly,the current development and future prospects of bionic hydrogels in bioelectronic devices are summarized.Hopefully,this comprehensive review could inspire advancements in bionic hydrogels for applications in bioelectronic devices.
基金financially supported by the National Natural Science Foundation of China(Nos.52303239 and 51933001)Natural Science Foundation of Shandong Province(Nos.ZR2022QB141 and 2023HWYQ-087).
文摘Intrinsic stretchability is a promising attribute of polymer organic solar cells(OSCs).However,rigid molecular blocks typically exhibit poor tensile properties,rendering polymers vulnerable to mechanical stress.In this study,we introduce a different approach utilizing all-small-molecule donors and acceptors to fabricate stretchable OSCs.An elastomer,styrene-b-ethylene-butylene-styrene(SEBS),was embedded to modulate film crystallization and stretchability.SEBS effectively confines the growth process of donors and acceptors,leading to enhancement of the crystallization quality,thus contributing to enhanced device efficiencies.Meanwhile,SEBS can absorb and release mechanical stress during stretching,thereby preventing mechanical degradation of donors and acceptors.The mechanical properties of the OSCs were significantly improved by the incorporation of SEBS.Notably,the crack-onset strain increased from 1.03% to 5.99% with SEBS embedding.These findings present a straightforward strategy for achieving stretchable OSCs using all small molecules,offering a different perspective for realizing stretchable devices.
文摘The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature.
基金financial support from National Natural Science Foundation of China(Nos.22005186 and 51877132) was acknowledged。
文摘Flexible and stretchable energy storage devices are highly desirable for wearable electronics,particularly in the emerging fields of smart clothes,medical instruments,and stretchable skin.Lithium metal batteries(LMBs) with high power density and long cycle life are one of the ideal power sources for flexible and stretchable energy storage devices.However,the current LMBs are usually too rigid and bulky to meet the requirements of these devices.The electrolyte is the critical component that determines the energy density and security of flexible and stretchable LMBs.Among various electrolytes,gel polymer electrolytes(GPEs) perform excellent flexibility,safety,and high ionic conductivity compared with traditional liquid electrolytes and solid electrolytes,fulfilling the next generation deformable LMBs.This essay mainly reviews and highlights the recent progress in GPEs for flexible/stretchable LMBs and provides some useful insights for people interested in this field.Additionally,the multifunctional GPEs with self-healing,flame retardant,and temperature tolerance abilities are summarized.Finally,the perspectives and opportunities for flexible and stretchable GPEs are discussed.
基金supported by the National Key Re-search and Development Program of China(No.2021YFA0715700)the National Natural Science Foundation of China(No.52003212).
文摘As a natural biopolymer material,silk fibroin with unique mechanical properties can be used in the preparation of biocomposite hydrogels for strain sensors.But,the electromechanical properties of bio-composite hydrogel strain sensors are still insufficient,such as the deterioration of electrical signals and low sensitivity,which need to develop a hydrogel with a stable transmission network for electric con-duction.Herein,a silk fibroin biocomposite hydrogel is prepared by incorporating tannic acid and MXene nanosheets into a polyacrylamide and silk fibroin double network.The electromechanical properties of hydrogels are improved by optimizing the proportion of material components.As a result,the double network structure and supramolecular interaction enhance the stretchability of hydrogels(692% fracture strain).The hydrogel also exhibits good biocompatibility and conductivity(0.85 S/m),which shows the application prospect in wearable sensors.The wireless strain sensor assembled by this biocomposite hy-drogel presents good portability and sensing performance,such as high sensitivity(gauge factor=6.04),wide working range(500% strain),and outstanding stability(1000 cycles at 100%strain).The results in-dicate that the hydrogel strain sensor can be used to monitor human body movement.The biocomposite hydrogel is expected to be applied in the field of wearable strain sensors,and this study can provide a new way for the design of flexible electronic materials.
基金financially supported by the Sichuan Provincial Science and Technology Fund for Distinguished Young Scholars,China(Grant No.2022JDJQ0028)Research Startup Fund by Sichuan University,China(Grant No.YJ202218).
文摘Triboelectric nanogenerators(TENGs)are emerging as new technologies to harvest electrical power from mechanical energy.With the distinctive working mechanism of triboelectric nanogenerators,they attract particular interest in healthcare monitoring,wearable electronics,and deformable energy harvesting,which raises the requirement for highly conformable devices with substantial energy outputs.Here,a simple,low-cost strategy for fabricating stretchable triboelectric nanogenerators with ultra-high electrical output is developed.The TENG is prepared using PTFE micron particles(PPTENG),contributing a different electrostatic induction process compared to TENG based on dielectric films,which was associated with the dynamics of particle motions in PP-TENG.The generator achieved an impressive voltage output of 1000 V with a current of 25 lA over a contact area of 40320 mm^(2).Additionally,the TENG exhibits excellent durability with a stretching strain of 500%,and the electrical output performance does not show any significant degradation even after 3000 cycles at a strain of 400%.The unique design of the device provides high conformability and can be used as a self-powered sensor for human motion detection.
基金supported by the National Natural Sci-ence Foundation of China(No.12072325)the Natural Science Foundation of Henan Province(No.20A430028).
文摘Stretchable conductive fibers are essential for the advancement of wearable electronic textiles.However,a significant challenge arises as their conductivity sharply decreases when stretched due to disruptions in electronic transport.Coating fibers with soft liquid metal(LM)has emerged as a promising solution.Despite this,there remains an urgent need to develop methods that enhance LM adhesion to substrates while facilitating efficient electron transport pathways.This study demonstrates a novel Ag-LM conductive network strategy for fabricating a thermoplastic polyurethane/polydopamine/silver-LM(TPU/PDA/Ag-LM)fiber membrane.This membrane exhibits outstanding stretchable electromagnetic interference(EMI)shielding performance and is produced through straightforward electrospinning,electroless depositing,and LM coating and activation.The TPU/PDA/Ag fiber membrane is initially prepared via polydopamineassisted deposition of silver nanoparticles(AgNPs)on electrospun TPU fibers.The presence of AgNPs on the surface of TPU/PDA fibers enhances LM adhesion to the substrate and bridges adjacent LM to establish efficient conductive paths.This interaction benefits from the reactive alloying between AgNPs and LM,where the LM infiltrates the gaps among AgNPs,forming a distinctive LM-Ag alloy layer that uniformly coats the surface of TPU fibers.As anticipated,the unique three-dimensional(3D)interconnected LM-Ag conductive network remains intact during stretching,ensuring strain-invariant conductivity.The fabricated TPU/PDA/Ag-LM fiber membrane demonstrates exceptional EMI shielding effectiveness(SE)of 77.4 dB within the frequency range of 8.2-12.8 GHz and maintains an excellent EMI SE of 37.2 dB under extensive tensile deformation of 300%.Furthermore,the TPU/PDA/Ag-LM fiber membrane shows remarkable mechanical properties and stable Joule heating performance even under significant stretching.
文摘This paper examines the transport analysis,including both heat transfer and mass transfer,in hybrid nanofluid flow containing gyrotactic microorganisms towards a curved oscillatory surface.The influence of magnetic fields is also inspected in terms of their physical characteristics.To depict the phenomena of transport,modified versions of both Fick's and Fourier's laws are used.Additionally,the characteristics of both heterogeneous and homogeneous chemical reactions are also incorporated.Utilizing a curvilinear coordinate system,the flow problem is formulated as partial differential equations(PDEs)for momentum,concentration,microorganism field,and energy.An analytical solution to the obtained flow equations is achieved utilizing the homotopy analysis method(HAM).The effects of significant flow parameters on the pressure and microorganism fields,velocity,oscillation velocity,concentration,and temperature distributions are shown via graphs.Furthermore,the variations in skin friction,mass transfer rate,heat transfer rate,and local motile number due to different involved parameters are presented in tables and are analyzed in detail.Graphical results indicate that the curves of velocity and temperature fields are enhanced as the values of the solid volume fraction variables increase.It is also verified that the concentration rate field decreases as the values of the homogeneous reaction strength parameter and the radius of curvature parameter increase,and it increases with the Schmidt number and the heterogeneous reaction strength parameter.Tabular outcomes show a favorable response of the motile number to advanced values of the Peclet number,the Schmidt number,the microorganism difference parameter,and the bio-convective Lewis number.
基金supported by the National Natural Science Foundation of China(No.61775095)six talent peak innovation team in Jiangsu Province(No.TD-SWYY-009)“Taishan scholars”construction special fund of Shandong Province。
文摘The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge.Herein,MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor.The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties(3150%),compliant mechanical strength(2.03 kPa^(-1)in Young’s Module)and long-lasting stability and fatigue resistance(1000 dynamic cycles under 1,600%strain).Due to the highly oriented MXene-based three dimensional conductive networks,the hydrogel sensor achieved extremely high tensile sensitivity(18.15 in gauge factor)and compression sensitivity(0.38 kPa^(-1)below 3 kPa).MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance,typical frequent-independent feature and rapid response time to external stimuli.Moreover,the sensor exhibited accurate response to different scales of human movements,providing potential application in speech recognition,expression recognition and handwriting verification.
基金supported by National Natural Science Foundation of China (NSFC) (No. 61804103)National Key R&D Program of China (No. 2017YFA0205002)+8 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 18KJA535001 and 14KJB 150020)Natural Science Foundation of Jiangsu Province of China (Nos. BK20170343 and BK20180242)China Postdoctoral Science Foundation (No. 2017M610346)State Key Laboratory of Silicon Materials, Zhejiang University (No. SKL2018-03)Nantong Municipal Science and Technology Program (No. GY12017001)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University (KSL201803)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.
基金support from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)+1 种基金the Guangdong Natural Science Funds Grant(2018A030313400),the Science and Technology Program of Guangzhou(201904010456)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd09).
文摘With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.
基金This work was financially supported by Beijing Natural Science Foundation(2212033)National Natural Science Foundation of China(51971008,U1832138,51731002 and 51671010)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen access funding provided by Shanghai Jiao Tong University
文摘Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2232020A-08National Natural Science Foundation of China,Grant/Award Numbers:51973027,52003044。
文摘Stretchable thermoelectrics have recently attracted widespread attention in the field of self-powered wearable electronics due to their unique capability of harvesting body heat.However,it remains challenging to develop thermoelectric materials with excellent stretchability,durable thermoelectric properties,wearable comfort,and multifunctional sensing properties simultaneously.Herein,an advanced preparation strategy combining electrospinning and spraying technology is proposed to prepare carbon nanotube(CNT)/polyvinyl pyrrolidone(PVP)/polyurethane(PU)composite thermoelectric fabrics that have high air permeability and stretchability(~250%)close to those of pure PU nanofiber fabrics.Furthermore,PVP can not only improve the dispersion of CNTs but also act as interfacial binders between the CNT and the elastic PU skeleton.Consequently,both the electrical conductivity and the Seebeck coefficient remain unchanged even after bending 1000 times.In addition,self-powered sensors for the mutual conversion of finger temperature and language and detection of the movement of joints to optimize an athlete's movement state were successfully fabricated.This study paves the way for stretchable thermoelectric fabrics with fascinating applications in smart wearable fields such as power generation,health monitoring,and human–computer interaction.
基金supported by National Natural Science Foundation of China (51575016)the Beijing Oversea High-Level Talent Project+1 种基金strategic research Grant (KZ20141000500, B-type) of Beijing Natural Science Foundation P.R. Chinathe support by the China Scholarship Council (20160654015) for his research stay at the Institute of Physical and Chemical Research,Wako, Japan
文摘Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.
基金J.W.acknowledges financial supports from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22lgqb17).
文摘Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
基金National Natural Science Foundation of China(NSFC Grant No.61625404)the Science and Technology Development Plan of Jilin Province(20190103135JH)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001).
文摘Nanofibers/nanowires with one-dimension(1D)nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields,owing to their remarkable tolerance against mechanical bending or stretching,outstanding electronic/optoelectronic properties,good transparency,and excellent geometry.Herein,latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted.Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed.Finally,a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed.This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics.
基金This project was financially supported by the Research Grants Council(GRF Projects:16229216,16209917,16205517)the Innovation and Technology Commission(ITS/012/19)of Hong Kong SAR.
文摘Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications.Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities,existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity.Here,an ultrasensitive,highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers.The bilayer sensor consists of an aligned carbon nanotube(CNT)array assembled on top of a periodically wrinkled and cracked CNT-graphene oxide film.The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched,leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100%strain.The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3,to the benefit of accurate detection of loading directions by the multidirectional sensor.This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity,selectivity,and stretchability,demonstrating promising applications in full-range,multi-axis human motion detection for wearable electronics and smart robotics.
基金Jin Wu acknowledges financial support from the National Natural Science Foundation of China(No.61801525)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010693)+1 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22lgqb17)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05.
文摘Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.