Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimi...Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.展开更多
Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criter...Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criterion is used to predict the failure pressure of finite element model of corroded pipeline under internal pressure. By considering the pipe steel grades and geometries of corrosion defects, a series of finite element analyses is conducted. The effects of corrosion depth, length and width on burst capacity are also discussed. A specific failure pressure solution for the assessment of corrosion defects in moderate-to-high strength pipeline is proposed on the base of numerical results. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods.展开更多
基金supported by National Natural Science Foundation of China[Grant No.51575399]the National Key Research and Development Program of China[Grant No.2016YFB0101602].
文摘Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.
基金financially supported by Ministry of Science and Technology of China(Grant No.2011CB013702)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0051)
文摘Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criterion is used to predict the failure pressure of finite element model of corroded pipeline under internal pressure. By considering the pipe steel grades and geometries of corrosion defects, a series of finite element analyses is conducted. The effects of corrosion depth, length and width on burst capacity are also discussed. A specific failure pressure solution for the assessment of corrosion defects in moderate-to-high strength pipeline is proposed on the base of numerical results. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods.