The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to...The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.展开更多
Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redist...Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redistribution around a roadway, a series of numerical studies were carried out using the finite difference method. Since the stress changes around a roadway caused by rock bolting is small relative to the in situ stress, they cannot obviously be observed in stress contour plots. To overcome this difficulty, a new result processing methodology was developed using the contouring program Surfer. With this methodology, the effects of rock bolts on stress redistribution can obviously be analyzed. Numerical results show that in the three patterns of rock bolts installed in the roof, in the roof and the two lateral sides, and in all the four sides of the rectangular roadway, the maximum stress magnitude of the increase is 0.931 MPa, 2.46 MPa,and 6.5 MPa, respectively; the bolt number of 5 can form an integrated ground arch; the appropriate length and pre-tensioned force of the rock bolt is 2.0 m and 60 k N, respectively. What is more, the ground arch action under the function of rock bolting is able to be effectively examined. The rock bolts dramatically increase the minor principal stress around a roadway which results in significant increase in material strength. Consequently, the major principal stress that the material can carry will greatly increase.With adequate supports, an integrated ground arch which is critical for the stability of roadway will be formed around the roadway.展开更多
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load...Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.展开更多
For plastic deformed parts, the dimensional accuracy is significantly affected by residual stresses and so does the performance in service. Therefore, the rolling process of GH4169 alloy sheet at room temperature was ...For plastic deformed parts, the dimensional accuracy is significantly affected by residual stresses and so does the performance in service. Therefore, the rolling process of GH4169 alloy sheet at room temperature was investigated by finite element method. The effects of rolling reduction, friction coefficient, rolling velocity and initial stress on the longitudinal residual stress distribution over the thickness of GH4169 alloy sheet were analyzed. The results show that the values of longitudinal residual stress can be slightly reduced by increasing the rolling reduction and velocity. The longitudinal residual stress over the thickness distributes as ‘‘V'' type or weak ‘‘W'' type. The initial stress mainly has an effect on the longitudinal stress in the backward slip area. But the friction coefficient has remarkable influence on longitudinal residual stress. With the friction coefficient increasing from 0.1 to 0.5, the value of longitudinal residual stress on the sheet surface is reduced by 282 MPa. Simultaneously, the tensile stress turns into compressive stress with a strong‘‘W'' type distribution.展开更多
Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bend...Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.展开更多
Leveling process plays an important role in delivering the desired material properties and product standards.An analytical method for the rotational leveling process of bars was presented.First,each cross section of t...Leveling process plays an important role in delivering the desired material properties and product standards.An analytical method for the rotational leveling process of bars was presented.First,each cross section of the bar in the leveling area was discretized with the roller gap-curvature relations established in both planes XYand XZ.Second,a numerical procedure with two steps was developed to simulate both pressing and leveling processes.This approach can be easily implemented to produce simulation results of the curvature and trajectory distributions during the leveling process,as well as the bending and residual stresses.It is found that curvature and trajectory distributions follow a sine-shape due to the characteristic of rotational movement,which also results in a helical pattern of residual stress after leveling.Based on the results obtained,it is also observed that the rotational movement is beneficial for adding the number of bending cycle.This is the reason why there are only a few pairs of rollers on the bar leveler.展开更多
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T...In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.展开更多
Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffe...Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffering from“double disadvantage”.So,based on an ecological model of the stress process,this paper tries to use the data of the questionnaire on the mental health of mobile young white-collar workers in Zhejiang Province to explore the influence of some factors in the middle workplace and residence place on the mental health of micro individuals.The results show that:(1)The working environment with high control and low freedom and the workplace discrimination against the mobile status will have a negative impact on the mental health of mobile young white-collar workers;(2)Financial anxiety in daily life will lead to a decline in the mental health level of mobile young white-collar workers;(3)Good organizational support and neighborhood social relations can significantly relieve life pressure,so as to effectively improve the mental health of mobile young white-collar workers.It can be seen that we also need to pay more attention to the mental health of mobile young white-collar workers in order to improve their situation.展开更多
During the United States economic recession of 2008-2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up th...During the United States economic recession of 2008-2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs.展开更多
By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stre...By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.展开更多
基金Project(51301209) supported by the National Natural Science Foundation of ChinaProject(201191107) supported by Science and Technology Plan of Xinjiang Province,China
文摘The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.
基金Financial support for this work provided by the National Key Scientific Apparatus Development of Special Item (No.2012YQ24012705)is deeply appreciated
文摘Besides opening geometry, in situ stress and material properties, opening support also has significant effects on stress redistribution around a roadway. To investigate these effects of rock bolts on the stress redistribution around a roadway, a series of numerical studies were carried out using the finite difference method. Since the stress changes around a roadway caused by rock bolting is small relative to the in situ stress, they cannot obviously be observed in stress contour plots. To overcome this difficulty, a new result processing methodology was developed using the contouring program Surfer. With this methodology, the effects of rock bolts on stress redistribution can obviously be analyzed. Numerical results show that in the three patterns of rock bolts installed in the roof, in the roof and the two lateral sides, and in all the four sides of the rectangular roadway, the maximum stress magnitude of the increase is 0.931 MPa, 2.46 MPa,and 6.5 MPa, respectively; the bolt number of 5 can form an integrated ground arch; the appropriate length and pre-tensioned force of the rock bolt is 2.0 m and 60 k N, respectively. What is more, the ground arch action under the function of rock bolting is able to be effectively examined. The rock bolts dramatically increase the minor principal stress around a roadway which results in significant increase in material strength. Consequently, the major principal stress that the material can carry will greatly increase.With adequate supports, an integrated ground arch which is critical for the stability of roadway will be formed around the roadway.
基金financially supported by Offshore Engineering Equipment Scientific Research Project--Topic on Subsea Production System DesignKey Equipment Research & Development from Ministry of Industry and Information Technology of the People's Republic of China E-0813C003
文摘Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.
基金supported by the fund of Special Inventive Fund of Science and Technology in Shenyang under the Contract Number F15-172-6-00the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, under the Contract Number SKLAB02014001
文摘For plastic deformed parts, the dimensional accuracy is significantly affected by residual stresses and so does the performance in service. Therefore, the rolling process of GH4169 alloy sheet at room temperature was investigated by finite element method. The effects of rolling reduction, friction coefficient, rolling velocity and initial stress on the longitudinal residual stress distribution over the thickness of GH4169 alloy sheet were analyzed. The results show that the values of longitudinal residual stress can be slightly reduced by increasing the rolling reduction and velocity. The longitudinal residual stress over the thickness distributes as ‘‘V'' type or weak ‘‘W'' type. The initial stress mainly has an effect on the longitudinal stress in the backward slip area. But the friction coefficient has remarkable influence on longitudinal residual stress. With the friction coefficient increasing from 0.1 to 0.5, the value of longitudinal residual stress on the sheet surface is reduced by 282 MPa. Simultaneously, the tensile stress turns into compressive stress with a strong‘‘W'' type distribution.
基金financially supported by the National Natural Science Foundation of China (No.51374139)the Natural Science Foundation of Shandong Province (No.ZR2013EEM018)the Scientific Research Innovation Team Support Plan of Shandong University of Science and Technology
文摘Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.
文摘Leveling process plays an important role in delivering the desired material properties and product standards.An analytical method for the rotational leveling process of bars was presented.First,each cross section of the bar in the leveling area was discretized with the roller gap-curvature relations established in both planes XYand XZ.Second,a numerical procedure with two steps was developed to simulate both pressing and leveling processes.This approach can be easily implemented to produce simulation results of the curvature and trajectory distributions during the leveling process,as well as the bending and residual stresses.It is found that curvature and trajectory distributions follow a sine-shape due to the characteristic of rotational movement,which also results in a helical pattern of residual stress after leveling.Based on the results obtained,it is also observed that the rotational movement is beneficial for adding the number of bending cycle.This is the reason why there are only a few pairs of rollers on the bar leveler.
基金financially supported by the National Key Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.51474136 and 51474013)+1 种基金the Opening Project Fund of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (No.MDPC2013KF06)the Research Award Fund for the Excellent Youth of Shandong University of Science and Technology (No.2011KYJQ106)
文摘In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.
基金the National Social Science Fund of China(Grant No.20BTJ005).
文摘Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffering from“double disadvantage”.So,based on an ecological model of the stress process,this paper tries to use the data of the questionnaire on the mental health of mobile young white-collar workers in Zhejiang Province to explore the influence of some factors in the middle workplace and residence place on the mental health of micro individuals.The results show that:(1)The working environment with high control and low freedom and the workplace discrimination against the mobile status will have a negative impact on the mental health of mobile young white-collar workers;(2)Financial anxiety in daily life will lead to a decline in the mental health level of mobile young white-collar workers;(3)Good organizational support and neighborhood social relations can significantly relieve life pressure,so as to effectively improve the mental health of mobile young white-collar workers.It can be seen that we also need to pay more attention to the mental health of mobile young white-collar workers in order to improve their situation.
文摘During the United States economic recession of 2008-2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs.
文摘By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.