To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linea...To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.展开更多
This research aims to study the effect of elevated temperature on the compressive strength evolution of concrete made with recycled aggregate.Demolished building concrete samples were collected from four different sit...This research aims to study the effect of elevated temperature on the compressive strength evolution of concrete made with recycled aggregate.Demolished building concrete samples were collected from four different sites in Saudi Arabia,namely from Tabuk,Madina,Yanbu,and Riyadh.These concretes were crushed and recycled into aggregates to be used to make new concrete samples.These samples were tested for axial compressive strength at ages 3,7,14,and 28 days at ambient temperature.Samples of the same concrete mixes were subjected to the elevated temperature of 300°C and tested for compressive strength again.The experimental result reveals that the recycled aggregate concrete samples have good quality at ambient and elevated temperatures and are considered fairly close to the concrete made with natural aggregate.However,recycled aggregate concrete at high temperatures showed higher strength degradation than natural aggregate concrete,but with differences that do not exceed 5%to 10%.The concrete samples made from recycled coarse aggregates also reached the design strength.It can be considered acceptable,considering the high variation in the concrete’s thermal response found in the literature.展开更多
The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confi...The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confining strain component, the material constants of Hock-Brown failure criterion are presented, and a modified elemental scale elastic-brittle-plastic constitutive model of rock is established. The rela- tionship between volumetric strain and permeability through tri-axial compression is investigated. Based on the above, a permeability evolution model is established. The model incorporates confining pressure- dependent degradation of strength, dilatancy and corresponding permeability evolution. The model is implemented in FLAC by the FISH function method. The permeability evolution behavior of rock is inves-tigated during the progressive failure process in a numerical case. The results show that the model is cap- able of reproducing, and allowing visualization of a range of hydro-mechanical responses of rock. The effects of confining pressure on degradation of strength, dilatancy and permeability evolution are also reflected.展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 51174128), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20123718110007)
文摘To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.
文摘This research aims to study the effect of elevated temperature on the compressive strength evolution of concrete made with recycled aggregate.Demolished building concrete samples were collected from four different sites in Saudi Arabia,namely from Tabuk,Madina,Yanbu,and Riyadh.These concretes were crushed and recycled into aggregates to be used to make new concrete samples.These samples were tested for axial compressive strength at ages 3,7,14,and 28 days at ambient temperature.Samples of the same concrete mixes were subjected to the elevated temperature of 300°C and tested for compressive strength again.The experimental result reveals that the recycled aggregate concrete samples have good quality at ambient and elevated temperatures and are considered fairly close to the concrete made with natural aggregate.However,recycled aggregate concrete at high temperatures showed higher strength degradation than natural aggregate concrete,but with differences that do not exceed 5%to 10%.The concrete samples made from recycled coarse aggregates also reached the design strength.It can be considered acceptable,considering the high variation in the concrete’s thermal response found in the literature.
基金the National Natural Science Foundation of China (Nos.51274079,51274110 and 51574139)the Natural Science Foundation of Hebei Province (No.E2013208148)
文摘The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confining strain component, the material constants of Hock-Brown failure criterion are presented, and a modified elemental scale elastic-brittle-plastic constitutive model of rock is established. The rela- tionship between volumetric strain and permeability through tri-axial compression is investigated. Based on the above, a permeability evolution model is established. The model incorporates confining pressure- dependent degradation of strength, dilatancy and corresponding permeability evolution. The model is implemented in FLAC by the FISH function method. The permeability evolution behavior of rock is inves-tigated during the progressive failure process in a numerical case. The results show that the model is cap- able of reproducing, and allowing visualization of a range of hydro-mechanical responses of rock. The effects of confining pressure on degradation of strength, dilatancy and permeability evolution are also reflected.
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.