期刊文献+
共找到2,761篇文章
< 1 2 139 >
每页显示 20 50 100
Low-cost Remote Rain and Stream Data Acquisition System for Mapping of Potential Micro-Hydro Sites
1
作者 R. C. Pallugna A. B. Cultura +1 位作者 C. M. Gozon N. R. Estoperez 《Energy and Power Engineering》 2013年第4期56-62,共7页
The stream and rain data acquisition system presented in this paper makes the mapping of hydro potentials in the region or of the country economically and practically possible. Moreover, it can also serve as a flood w... The stream and rain data acquisition system presented in this paper makes the mapping of hydro potentials in the region or of the country economically and practically possible. Moreover, it can also serve as a flood warning system. 展开更多
关键词 stream data Acquisition MICRO-HYDRO FLOOD WARNING System
暂未订购
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
2
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data IOT IIoT TMoT REAL-TIME LIGHTWEIGHT modeling
在线阅读 下载PDF
Modeling and Performance Evaluation of Streaming Data Processing System in IoT Architecture
3
作者 Feng Zhu Kailin Wu Jie Ding 《Computers, Materials & Continua》 2025年第5期2573-2598,共26页
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth... With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads. 展开更多
关键词 System modeling performance evaluation streaming data process IoT system PEPA
在线阅读 下载PDF
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data 被引量:2
4
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
在线阅读 下载PDF
Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach
5
作者 Dayu Xu Jiaming Lu +1 位作者 Xuyao Zhang Hongtao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2557-2573,共17页
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims... Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research. 展开更多
关键词 data stream clustering TEDA KD-TREE scapegoat tree
在线阅读 下载PDF
Clustering algorithm for multiple data streams based on spectral component similarity 被引量:1
6
作者 邹凌君 陈崚 屠莉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期264-266,共3页
A new algorithm for clustering multiple data streams is proposed.The algorithm can effectively cluster data streams which show similar behavior with some unknown time delays.The algorithm uses the autoregressive (AR... A new algorithm for clustering multiple data streams is proposed.The algorithm can effectively cluster data streams which show similar behavior with some unknown time delays.The algorithm uses the autoregressive (AR) modeling technique to measure correlations between data streams.It exploits estimated frequencies spectra to extract the essential features of streams.Each stream is represented as the sum of spectral components and the correlation is measured component-wise.Each spectral component is described by four parameters,namely,amplitude,phase,damping rate and frequency.The ε-lag-correlation between two spectral components is calculated.The algorithm uses such information as similarity measures in clustering data streams.Based on a sliding window model,the algorithm can continuously report the most recent clustering results and adjust the number of clusters.Experiments on real and synthetic streams show that the proposed clustering method has a higher speed and clustering quality than other similar methods. 展开更多
关键词 data streams CLUSTERING AR model spectral component
在线阅读 下载PDF
MRST-- An Efficient Monitoring Technology of Summarization on Stream Data 被引量:1
7
作者 樊小泊 解婷婷 +1 位作者 李翠平 陈红 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第2期190-196,共7页
Monitoring on data streams is an efficient method of acquiring the characters of data stream. However the available resources for each data stream are limited, so the problem of how to use the limited resources to pro... Monitoring on data streams is an efficient method of acquiring the characters of data stream. However the available resources for each data stream are limited, so the problem of how to use the limited resources to process infinite data stream is an open challenging problem. In this paper, we adopt the wavelet and sliding window methods to design a multi-resolution summarization data structure, the Multi-Resolution Summarization Tree (MRST) which can be updated incrementally with the incoming data and can support point queries, range queries, multi-point queries and keep the precision of queries. We use both synthetic data and real-world data to evaluate our algorithm. The results of experiment indicate that the efficiency of query and the adaptability of MRST have exceeded the current algorithm, at the same time the realization of it is simpler than others. 展开更多
关键词 Haar wavelet sliding window stream data
原文传递
Data partitioning based on sampling for power load streams
8
作者 王永利 徐宏炳 +2 位作者 董逸生 钱江波 刘学军 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期293-298,共6页
A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh... A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing. 展开更多
关键词 data streams continuous queries parallel processing sampling data partitioning
在线阅读 下载PDF
Min-wise hash function-based sampling over distributed data streams
9
作者 崇志宏 倪巍伟 +2 位作者 徐立臻 吕建华 谢英豪 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期456-459,共4页
In order to avoid the redundant and inconsistent information in distributed data streams, a sampling method based on min-wise hash functions is designed and the practical semantics of the union of distributed data str... In order to avoid the redundant and inconsistent information in distributed data streams, a sampling method based on min-wise hash functions is designed and the practical semantics of the union of distributed data streams is defined. First, for each family of min-wise hash functions, the data with the minimum hash value are selected as local samples and the biased effect caused by frequent updates in a single data stream is filtered out. Secondly, for the same hash function, the sample with the minimum hash value is selected as the global sample and the local samples are combined at the center node to filter out the biased effect of duplicated updates. Finally, based on the obtained uniform samples, several aggregations on the defined semantics of the union of data streams are precisely estimated. The results of comparison tests on synthetic and real-life data streams demonstrate the effectiveness of this method. 展开更多
关键词 data streams AGGREGATION rain-wise hashing
在线阅读 下载PDF
Oracle Data Guard与Oracle Streams技术对比 被引量:4
10
作者 关锦明 张宗平 李海雁 《现代计算机》 2007年第10期72-74,共3页
Oracle Data Guard和Oracle Streams是提高数据库可用性,构建灾难备份系统以及实现数据库分布的理想的技术解决方案。探讨Oracle Data Guard和Oracle Streams技术的实现原理以及技术特点。
关键词 数据库 数据保护 数据复制 数据同步 data GUARD streamS
在线阅读 下载PDF
Super point detection based on sampling and data streaming algorithms
11
作者 程光 强士卿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期224-227,共4页
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and... In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption. 展开更多
关键词 super point flow sampling data streaming
在线阅读 下载PDF
An online anomaly detection method for stream data using isolation principle and statistic histogram
12
作者 Zhiguo Ding Minrui Fei Dajun Du 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第2期85-106,共22页
Online anomaly detection for stream data has been explored recently,where the detector is supposed to be able to perform an accurate and timely judgment for the upcoming observation.However,due to the inherent complex... Online anomaly detection for stream data has been explored recently,where the detector is supposed to be able to perform an accurate and timely judgment for the upcoming observation.However,due to the inherent complex characteristics of stream data,such as quick generation,tremendous volume and dynamic evolution distribution,how to develop an effective online anomaly detection method is a challenge.The main objective of this paper is to propose an adaptive online anomaly detection method for stream data.This is achieved by combining isolation principle with online ensemble learning,which is then optimized by statistic histogram.Three main algorithms are developed,i.e.,online detector building algorithm,anomaly detecting algorithm and adaptive detector updating algorithm.To evaluate our proposed method,four massive datasets from the UCI machine learning repository recorded from real events were adopted.Extensive simulations based on these datasets show that our method is effective and robust against different scenarios. 展开更多
关键词 Online anomaly detection stream data isolation principle ensemble learning statistic histogram
原文传递
Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse 被引量:5
13
作者 Yihong Yang Sheng Ding +4 位作者 Yuwen Liu Shunmei Meng Xiaoxiao Chi Rui Ma Chao Yan 《Digital Communications and Networks》 SCIE CSCD 2022年第4期498-507,共10页
Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute ... Edge-computing-enabled smart greenhouses are a representative application of the Internet of Things(IoT)technology,which can monitor the environmental information in real-time and employ the information to contribute to intelligent decision-making.In the process,anomaly detection for wireless sensor data plays an important role.However,the traditional anomaly detection algorithms originally designed for anomaly detection in static data do not properly consider the inherent characteristics of the data stream produced by wireless sensors such as infiniteness,correlations,and concept drift,which may pose a considerable challenge to anomaly detection based on data stream and lead to low detection accuracy and efficiency.First,the data stream is usually generated quickly,which means that the data stream is infinite and enormous.Hence,any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space.Second,there exist correlations among different data streams,and traditional algorithms hardly consider these correlations.Third,the underlying data generation process or distribution may change over time.Thus,traditional anomaly detection algorithms with no model update will lose their effects.Considering these issues,a novel method(called DLSHiForest)based on Locality-Sensitive Hashing and the time window technique is proposed to solve these problems while achieving accurate and efficient detection.Comprehensive experiments are executed using a real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach.Experimental results show that our proposal is practical for addressing the challenges of traditional anomaly detection while ensuring accuracy and efficiency. 展开更多
关键词 Anomaly detection data stream DLSHiForest Smart greenhouse Edge computing
在线阅读 下载PDF
An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data 被引量:1
14
作者 Romany F.Mansour Shaha Al-Otaibi +3 位作者 Amal Al-Rasheed Hanan Aljuaid Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2021年第9期2843-2858,共16页
Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directl... Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directly in these big data streams.At the same time,streaming data from several applications results in two major problems such as class imbalance and concept drift.The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection(MOMBD-CDD)method on High-Dimensional Streaming Data.The presented MOMBD-CDD model has different operational stages such as pre-processing,CDD,and classification.MOMBD-CDD model overcomes class imbalance problem by Synthetic Minority Over-sampling Technique(SMOTE).In order to determine the oversampling rates and neighboring point values of SMOTE,Glowworm Swarm Optimization(GSO)algorithm is employed.Besides,Statistical Test of Equal Proportions(STEPD),a CDD technique is also utilized.Finally,Bidirectional Long Short-Term Memory(Bi-LSTM)model is applied for classification.In order to improve classification performance and to compute the optimum parameters for Bi-LSTM model,GSO-based hyperparameter tuning process is carried out.The performance of the presented model was evaluated using high dimensional benchmark streaming datasets namely intrusion detection(NSL KDDCup)dataset and ECUE spam dataset.An extensive experimental validation process confirmed the effective outcome of MOMBD-CDD model.The proposed model attained high accuracy of 97.45%and 94.23%on the applied KDDCup99 Dataset and ECUE Spam datasets respectively. 展开更多
关键词 streaming data concept drift classification model deep learning class imbalance data
在线阅读 下载PDF
Dynamically Computing Approximate Frequency Counts in Sliding Window over Data Stream 被引量:1
15
作者 NIE Guo-liang LU Zheng-ding 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期283-288,共6页
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru... This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective. 展开更多
关键词 data stream sliding window approximation algorithms frequency counts
在线阅读 下载PDF
An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining 被引量:2
16
作者 Saihua Cai Ruizhi Sun +2 位作者 Shangbo Hao Sicong Li Gang Yuan 《China Communications》 SCIE CSCD 2019年第10期83-99,共17页
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional... The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining. 展开更多
关键词 OUTLIER detection WEIGHTED data stream MINIMAL WEIGHTED RARE pattern MINING deviation factors
在线阅读 下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
17
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
在线阅读 下载PDF
Data Stream Subspace Clustering for Anomalous Network Packet Detection 被引量:1
18
作者 Zachary Miller Wei Hu 《Journal of Information Security》 2012年第3期215-223,共9页
As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer netw... As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer networks from external attacks, two common types of Intrusion Detection Systems (IDSs) are often deployed. The first type is signature-based IDSs which can detect intrusions efficiently by scanning network packets and comparing them with human-generated signatures describing previously-observed attacks. The second type is anomaly-based IDSs able to detect new attacks through modeling normal network traffic without the need for a human expert. Despite this advantage, anomaly-based IDSs are limited by a high false-alarm rate and difficulty detecting network attacks attempting to blend in with normal traffic. In this study, we propose a StreamPreDeCon anomaly-based IDS. StreamPreDeCon is an extension of the preference subspace clustering algorithm PreDeCon designed to resolve some of the challenges associated with anomalous packet detection. Using network packets extracted from the first week of the DARPA '99 intrusion detection evaluation dataset combined with Generic Http, Shellcode and CLET attacks, our IDS achieved 94.4% sensitivity and 0.726% false positives in a best case scenario. To measure the overall effectiveness of the IDS, the average sensitivity and false positive rates were calculated for both the maximum sensitivity and the minimum false positive rate. With the maximum sensitivity, the IDS had 80% sensitivity and 9% false positives on average. The IDS also averaged 63% sensitivity with a 0.4% false positive rate when the minimal number of false positives is needed. These rates are an improvement on results found in a previous study as the sensitivity rate in general increased while the false positive rate decreased. 展开更多
关键词 ANOMALY DETECTION INTRUSION DETECTION System Network Security PREFERENCE SUBSPACE Clustering stream data Mining
暂未订购
A graph-based sliding window multi-join over data stream 被引量:1
19
作者 ZHANG Liang Byeong-Seob You +2 位作者 GE Jun-wei LIU Zhao-hong Hae-Young Bae 《重庆邮电大学学报(自然科学版)》 2007年第3期362-366,共5页
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo... Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment. 展开更多
关键词 数据流 查询优化 图论 可调整窗口
在线阅读 下载PDF
Big Data Stream Analytics for Near Real-Time Sentiment Analysis 被引量:1
20
作者 Otto K. M. Cheng Raymond Lau 《Journal of Computer and Communications》 2015年第5期189-195,共7页
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente... In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies. 展开更多
关键词 BIG data data stream ANALYTICS SENTIMENT Analysis ONLINE Review
暂未订购
上一页 1 2 139 下一页 到第
使用帮助 返回顶部