The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this back...The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this background,this article systematically explains the definition,characteristics,and classification of ecological building materials,and discusses the selection criteria and application scenarios of ecological building materials.On the basis of the previous analysis,the article proposes that the application of ecological building materials in architectural design needs to do a good job in the integration of materials,system expression,digital synergy,and total life cycle management.Thus,it expands the application scenarios of ecological building materials in architectural design and helps the industry to develop sustainably.展开更多
Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materi...Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materials in this field not only brings convenience to daily life but also promotes the scientific,sustainable,and stable development of construction projects.These materials significantly extend the service life of buildings while supporting environmental protection efforts.This paper explores the practical application value of energy-saving and environmentally friendly building materials in construction engineering,outlines the key application principles,and analyzes their specific types and usage requirements.The aim is to provide a valuable reference for future research and practical implementation.展开更多
Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbo...Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.展开更多
Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the deman...Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the demands of both environment protection and cost reduction.The authors proposed that the influence ranking of these materials on environment should be clarified first to settle this contradiction,that is,to choose energy-conserving and environment-friendly materials within the limit of expenditure.By comparing the energy consumption,shock resistance,economic efficiency and social acceptability of wall materials,the influence ranking was given as below:hollow concrete block < lime-sand brick < baked chamotte brick;by analyzing the advantages and disadvantages of floor and roof concrete materials,as well as attentions for reducing negative impacts,the order of their influence was given as below:precast concrete trough plate < precast hollow strength concrete plate < cast-in-place concrete plate < cast-in-place brick-concrete plate;suitable materials for door and window frameworks were concluded,the influence order of wall and floor decoration materials on environment was given as:bare walls without plastering < walls of stable soil plastering < walls of cement-water plastering < walls of lime plastering;concrete for the overall decoration < parquet floor < tile floor < terrazzo floor;and 7 heat retardation materials were suggested for the construction of new countryside.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
Healthy and livable living environments,as well as anti-electromagnetic(EM)radiation buildings,are the long-term goals of human beings.The introduction of advanced EM wave absorbing materials into buildings is one of ...Healthy and livable living environments,as well as anti-electromagnetic(EM)radiation buildings,are the long-term goals of human beings.The introduction of advanced EM wave absorbing materials into buildings is one of the most feasible ways to address the increasing EM pollution in building spaces.High-efficiency,broadband,low-cost and good building performance EM wave absorbing materials,as an important support in the field of sustainable building,has gradually become the hotspot research.Here,we review the research progress of building materials with EM wave absorption functions,and comb their classification,including cement,concrete,ceramics,and prefabs,especially highlighting the advanced coating materials.We objectively outline and evaluate the latest technology of building materials with EM wave absorption performance,and discuss the main problems and bottlenecks,highlighting potential research opportunities.展开更多
The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the pre...The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.展开更多
In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous p...In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.展开更多
Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with ...Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.展开更多
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and...The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.展开更多
This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change ma...This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.展开更多
In most of the world’s building material industries,the control of flue gas pollutants mainly focuses on a single pollutant.However,given the large capacity and high contribution of China’s building materials indust...In most of the world’s building material industries,the control of flue gas pollutants mainly focuses on a single pollutant.However,given the large capacity and high contribution of China’s building materials industry to global air pollution,the need to develop multipollutant emission reduction technology is urgent.Recently,China has focused on reducing the emissions of flue gas pollutants in the building materials industry,established many key research and development projects,and gradually implemented more stringent pollutant emission limits.This project focuses on the most recent advances in flue gas emission control technology in China’s building materials industry,including denitration,dust removal,desulfurization,synergistic multi-pollutant emission reduction,and the construction of pilot research and demonstration projects for pollutant removal in several building material industries.On this basis,revised pollutant limits in flue gas emitted in China’s building material industry are proposed.展开更多
There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degree...There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degrees.In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings,it is necessary to ascertain the material properties of blue brick in historic buildings.The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study.Through the analysis of physical properties,X-ray fluorescence spectroscopy,X-ray diffraction and scanning electron microscopy of blue brick specimens,the physical properties such as the apparent density,moisture content,porosity,and material structure composition are understood.The results show that the apparent density of blue brick is 1.64 g/cm^(3),the moisture content is 10.23%,the 24 h atmospheric water absorption is 17.86%,and the porosity is 20.99%.The smaller the apparent density is,the larger the porosity is,and the water absorption performance is better.From the microscopic point of view,bonding ability between blue brick mineral particles is relatively weak.The pores between skeletons are large and the pore structure is obvious.From the perspective of material phase,the elements of blue brick are mainly O,Si,Al,Fe,and the composition of blue brick is mainly composed of quartz and feldspar.The softening coefficient of blue brick is 0.80,and the deformation and stability of the structure should be paid special attention in the rainy season or wet environment.Through the frost test,there are salt substances in the internal pores of the brick,and the surface of the blue brick is eroded and pulverized.In this paper,the experimental process and analysis methods for testing the material properties of blue brick can provide reference for the research on the material properties of the same kind of blue-brick masonry in historic buildings and masonry relics.The relevant material property parameters obtained in this paper can provide guidance for making protection schemes and scientific repairs for historic buildings in Central China,enrich the evaluation criteria for maintaining and reinforcing historic buildings,and provide theoretical support for studying the damage and health detection technology related to historic buildings.展开更多
Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most o...Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.展开更多
The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used ...The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used in Morocco in order to evaluate the radiological risk caused by natural radioactivity. To this end, the analyses were carried out, using two nuclear techniques, namely high resolution gamma spectrometry and alpha dosimetry based on the use of LR115, on 50 samples collected from large commercial suppliers in Morocco. The results of these analyses show that the average specific activities of 226Ra, 232Th and 40K in these materials vary from 9 to 52 Bq/kg, 3 to 63 Bq/kg and 68 to 705 Bq/kg respectively. These activities remain within the permissible limits of 35 Bq/kg, 30 Bq/kg and 370 Bq/kg respectively, with the exception of a few samples of red brick, gray cement, ceramic and granite. The activity of the radium equivalent (Raeq), the internal (Hin) and external (Hex) hazard indices, the absorbed dose rate, the total annual effective dose , the excess lifetime cancer risk (ELCR) as well as volumic activities, exhalation rates in terms of area (ES) and mass (EM) are calculated for the samples analyzed in this work in order to assess the radiological risks resulting from the use of these materials in various construction activities. It seems that the values of these indices vary from 19 to 196 Bq/kg, 0.08 to 0.67, 0.05 to 0.53, 9 to 91 nGy/h, 0.05 to 0.56 mSv/y, 0.19 × 10−3 to 1.96 × 10−3, 72 to 350 Bq/m3, 56 to 273 mBq⋅m−2⋅h−1 and 3 to 15 mBq⋅kg−1⋅h−1 respectively. The lowest values are identified for gypsum, while the highest are attributed to granite. All of the obtained results of these indices respect the permissible limits except for the Raeq in some granite samples, the ELCR index in all samples except gypsum and the radon volumic activity in some gray cement samples, ceramic and granite. As a result, the different types of building materials analyzed in our work do not present a health risk to the public and can be used in various construction activities, with the exception of a few samples of red brick, gray cement, ceramic and granite. The choice of the use of red brick, gray cement and ceramic should be monitored and adapted according to the criteria of the limitation of the doses whereas the use of the granite must be moderate in order to limit over time the health risk which increases with the duration of exposure of humans to these building materials.展开更多
The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practic...The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.展开更多
To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement a...To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.展开更多
A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and th...A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and the simulation results were validated with experimental data from the literatures.The calculation shows that air exchange rate larger than 2 h-1 should be prevented,if the purpose is only for formaldehyde emissions control.The effects of temperature on formaldehyde migration are obvious.展开更多
The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimizati...The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimization of teaching methods,provide more space for student’s self-development,and improve the quality of talent training.Building materials in higher vocational colleges are a high requirement for practical ability,which emphasizes the cultivation of students’practical ability.Under the three-education reform concept,the traditional teaching mode should be replaced to provide more practical opportunities for students,in return give more attention to the development of students’practical ability.This paper mainly explores the current situation and training strategies in building material professionals in higher vocational colleges under the reform of the three education systems for a reference.展开更多
Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study...Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.展开更多
文摘The application of ecological building materials in architectural design is in line with the concept of green development and can promote the transformation and upgrading of the construction industry.Against this background,this article systematically explains the definition,characteristics,and classification of ecological building materials,and discusses the selection criteria and application scenarios of ecological building materials.On the basis of the previous analysis,the article proposes that the application of ecological building materials in architectural design needs to do a good job in the integration of materials,system expression,digital synergy,and total life cycle management.Thus,it expands the application scenarios of ecological building materials in architectural design and helps the industry to develop sustainably.
文摘Construction engineering plays a vital role in urban development,especially as the pace of modern progress continues to accelerate.The widespread use of energy-saving and green environmental protection building materials in this field not only brings convenience to daily life but also promotes the scientific,sustainable,and stable development of construction projects.These materials significantly extend the service life of buildings while supporting environmental protection efforts.This paper explores the practical application value of energy-saving and environmentally friendly building materials in construction engineering,outlines the key application principles,and analyzes their specific types and usage requirements.The aim is to provide a valuable reference for future research and practical implementation.
文摘Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.
基金Supported by National Soft Science Foundation(2008GXS5D128)Scientific and Technological Foundation of Talents(DB07012)~~
文摘Due to the high cost of environment-friendly materials and limited funds for the new countryside construction,it is the principal contradiction in the application of environment-friendly materials to satisfy the demands of both environment protection and cost reduction.The authors proposed that the influence ranking of these materials on environment should be clarified first to settle this contradiction,that is,to choose energy-conserving and environment-friendly materials within the limit of expenditure.By comparing the energy consumption,shock resistance,economic efficiency and social acceptability of wall materials,the influence ranking was given as below:hollow concrete block < lime-sand brick < baked chamotte brick;by analyzing the advantages and disadvantages of floor and roof concrete materials,as well as attentions for reducing negative impacts,the order of their influence was given as below:precast concrete trough plate < precast hollow strength concrete plate < cast-in-place concrete plate < cast-in-place brick-concrete plate;suitable materials for door and window frameworks were concluded,the influence order of wall and floor decoration materials on environment was given as:bare walls without plastering < walls of stable soil plastering < walls of cement-water plastering < walls of lime plastering;concrete for the overall decoration < parquet floor < tile floor < terrazzo floor;and 7 heat retardation materials were suggested for the construction of new countryside.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金supported by National Natural Science Foundation of China(Nos.51977009,11774027,52177014 and 51132002)。
文摘Healthy and livable living environments,as well as anti-electromagnetic(EM)radiation buildings,are the long-term goals of human beings.The introduction of advanced EM wave absorbing materials into buildings is one of the most feasible ways to address the increasing EM pollution in building spaces.High-efficiency,broadband,low-cost and good building performance EM wave absorbing materials,as an important support in the field of sustainable building,has gradually become the hotspot research.Here,we review the research progress of building materials with EM wave absorption functions,and comb their classification,including cement,concrete,ceramics,and prefabs,especially highlighting the advanced coating materials.We objectively outline and evaluate the latest technology of building materials with EM wave absorption performance,and discuss the main problems and bottlenecks,highlighting potential research opportunities.
文摘The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.
基金supported by the National Natural Science Foundation of China(51872147)the 111 Project(D20015)the Program for Innovative Research Team of Science and Technology in the Universities of Henan Province(19IRTSTHN025)。
文摘In this paper,the photocatalytic activity of industrial titanium dioxide(TiO2)based nacreous pigments was researched as functional building materials for photocatalytic NO remove.Three industrial TiO2 based nacreous pigments were selected to estimate the photocatalytic activity for NO remove.This study is a good proof that pearlescent pigments can eliminate NO,and its performance is positively correlated with its titanium dioxide content.And this research will widen the application of nacreous pigments in functional building materials,and provide a new way to eliminate in door nitric oxide pollution.
文摘Natural radioactivity radionuclides in building materials, such as^(226)Ra,^(232)Th and^(40)K, cause indoor exposure due to their gamma-rays. In this research, in a standard dwelling room(5.0 m 9 4.0 m 9 2.8 m), with the floor covered by various granite stones, was set up to simulate the dose rates from the radionuclides using MCNP4 C code. Using samples of granite building products in Iran, activities of the^(226)Ra,^(232)Th and^(40)K were measured at 3.8–94.2, 6.5–172.2 and 556.9–1529.2 Bq kg^(-1),respectively. The simulated dose rates were26.31–184.36 n Gy h^(-1), while the measured dose rates were 27.70–204.17 n Gy h^(-1). With the results in good agreement, the simulation is suitable for any kind of dwelling places.
文摘The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.
基金The authors would like to thank the Thailand Science Research and Innovation(TSRI),Faculty of Science,Naresuan University for providing financial support to this research work,and our research center.
文摘This work focused on characterizing and improving the thermal behavior of metal sheet roofing.To decrease the heat transfer from the roof into a building,we investigated the efficiency of four types of phase change materials,with different melting points:PCMІ,PCM II,PCM III and PCM IV,when used in conjunction with a sheet metal roof.The exterior metal roofing surface temperature was held constant at 50℃,60℃,70℃and 80℃,using a thermal source(halogen lights)for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials for each condition.The thermal behaviors of the phase change materials were analyzed by differential scanning calorimeter(DSC).The results showed the melting points of PCMІ,PCM II,PCM III and PCM IV were around 45℃,50℃,55℃and 59℃,respectively.The integration of PCM IV into the metal roofing sheet increased the thermal performance by reducing the room temperature up to 2.8%,1.4%,1.0%and 0.7%when compared with the normal metal roof sheet,at the controlled temperatures of 50℃,60℃,70℃and 80℃,respectively.The thermal absorption of the phase change materials also caused a time delay in the model room reaching a steady temperature.The integration of phase change materials with metal roofing sheets resulted in better thermal performance and conservation of electrical energy by reducing the demand for cooling.
基金supported by the National Key Research and Development Program of China(No.2017YFC0210700)。
文摘In most of the world’s building material industries,the control of flue gas pollutants mainly focuses on a single pollutant.However,given the large capacity and high contribution of China’s building materials industry to global air pollution,the need to develop multipollutant emission reduction technology is urgent.Recently,China has focused on reducing the emissions of flue gas pollutants in the building materials industry,established many key research and development projects,and gradually implemented more stringent pollutant emission limits.This project focuses on the most recent advances in flue gas emission control technology in China’s building materials industry,including denitration,dust removal,desulfurization,synergistic multi-pollutant emission reduction,and the construction of pilot research and demonstration projects for pollutant removal in several building material industries.On this basis,revised pollutant limits in flue gas emitted in China’s building material industry are proposed.
基金The authors would like to express heartfelt gratitude to the financial support by the Science Technology of the Ministry of Housing and Urban-Rural Development(No.2018-K9-065)China Postdoctoral Science Foundation Funded Project(No.2018M632805)+1 种基金Key Scientific and Technological Project of Henan Province(No.212102310932)Key Scientific and Technological Project of Kaifeng City(No.2001010).
文摘There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world.However,for the natural and man-made reasons,these historic buildings have been damaged in different degrees.In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings,it is necessary to ascertain the material properties of blue brick in historic buildings.The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study.Through the analysis of physical properties,X-ray fluorescence spectroscopy,X-ray diffraction and scanning electron microscopy of blue brick specimens,the physical properties such as the apparent density,moisture content,porosity,and material structure composition are understood.The results show that the apparent density of blue brick is 1.64 g/cm^(3),the moisture content is 10.23%,the 24 h atmospheric water absorption is 17.86%,and the porosity is 20.99%.The smaller the apparent density is,the larger the porosity is,and the water absorption performance is better.From the microscopic point of view,bonding ability between blue brick mineral particles is relatively weak.The pores between skeletons are large and the pore structure is obvious.From the perspective of material phase,the elements of blue brick are mainly O,Si,Al,Fe,and the composition of blue brick is mainly composed of quartz and feldspar.The softening coefficient of blue brick is 0.80,and the deformation and stability of the structure should be paid special attention in the rainy season or wet environment.Through the frost test,there are salt substances in the internal pores of the brick,and the surface of the blue brick is eroded and pulverized.In this paper,the experimental process and analysis methods for testing the material properties of blue brick can provide reference for the research on the material properties of the same kind of blue-brick masonry in historic buildings and masonry relics.The relevant material property parameters obtained in this paper can provide guidance for making protection schemes and scientific repairs for historic buildings in Central China,enrich the evaluation criteria for maintaining and reinforcing historic buildings,and provide theoretical support for studying the damage and health detection technology related to historic buildings.
基金We thank to the China Scholarship Council(CSC)for its financial support to the first author,No.201808120084.
文摘Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.
文摘The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used in Morocco in order to evaluate the radiological risk caused by natural radioactivity. To this end, the analyses were carried out, using two nuclear techniques, namely high resolution gamma spectrometry and alpha dosimetry based on the use of LR115, on 50 samples collected from large commercial suppliers in Morocco. The results of these analyses show that the average specific activities of 226Ra, 232Th and 40K in these materials vary from 9 to 52 Bq/kg, 3 to 63 Bq/kg and 68 to 705 Bq/kg respectively. These activities remain within the permissible limits of 35 Bq/kg, 30 Bq/kg and 370 Bq/kg respectively, with the exception of a few samples of red brick, gray cement, ceramic and granite. The activity of the radium equivalent (Raeq), the internal (Hin) and external (Hex) hazard indices, the absorbed dose rate, the total annual effective dose , the excess lifetime cancer risk (ELCR) as well as volumic activities, exhalation rates in terms of area (ES) and mass (EM) are calculated for the samples analyzed in this work in order to assess the radiological risks resulting from the use of these materials in various construction activities. It seems that the values of these indices vary from 19 to 196 Bq/kg, 0.08 to 0.67, 0.05 to 0.53, 9 to 91 nGy/h, 0.05 to 0.56 mSv/y, 0.19 × 10−3 to 1.96 × 10−3, 72 to 350 Bq/m3, 56 to 273 mBq⋅m−2⋅h−1 and 3 to 15 mBq⋅kg−1⋅h−1 respectively. The lowest values are identified for gypsum, while the highest are attributed to granite. All of the obtained results of these indices respect the permissible limits except for the Raeq in some granite samples, the ELCR index in all samples except gypsum and the radon volumic activity in some gray cement samples, ceramic and granite. As a result, the different types of building materials analyzed in our work do not present a health risk to the public and can be used in various construction activities, with the exception of a few samples of red brick, gray cement, ceramic and granite. The choice of the use of red brick, gray cement and ceramic should be monitored and adapted according to the criteria of the limitation of the doses whereas the use of the granite must be moderate in order to limit over time the health risk which increases with the duration of exposure of humans to these building materials.
基金Sponsored by Social Development Project of “Science and Technology Innovation Action Plan” of Shanghai Science and Technology Commission in 2019 (19DZ1203400)。
文摘The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation.
基金Funded by the Sciences and Technology Bureau of Yulin City (No. 2006YL100-06)
文摘To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.
文摘A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and the simulation results were validated with experimental data from the literatures.The calculation shows that air exchange rate larger than 2 h-1 should be prevented,if the purpose is only for formaldehyde emissions control.The effects of temperature on formaldehyde migration are obvious.
文摘The main purpose of the implementation of the three-education reform concept is to improve the teaching quality and talent training level of higher vocational colleges.Through the reform,one can promote the optimization of teaching methods,provide more space for student’s self-development,and improve the quality of talent training.Building materials in higher vocational colleges are a high requirement for practical ability,which emphasizes the cultivation of students’practical ability.Under the three-education reform concept,the traditional teaching mode should be replaced to provide more practical opportunities for students,in return give more attention to the development of students’practical ability.This paper mainly explores the current situation and training strategies in building material professionals in higher vocational colleges under the reform of the three education systems for a reference.
文摘Phase change materials(PCMs)have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings.This study focuses on the performances of materials obtained by combining a standard building material with a PCM.In particular,two different materials mixed with the same PCM are considered under the same climatic conditions.The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe.The results show that the addition of PCM to concrete and bricks can improve the thermal inertia of the resulting material.