期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
High-frequency interference waves in low strain dynamic testing of X-section concrete piles 被引量:1
1
作者 Qu Liming Fan Yuming +2 位作者 Ding Xuanming Yang Changwei Zhang Yanling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期877-885,共9页
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ... Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section. 展开更多
关键词 low strain dynamic testing X-section concrete pile high-frequency interference full-scale model test finite element method
在线阅读 下载PDF
Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature 被引量:1
2
作者 Mattias Calmunger Guocai Chai +1 位作者 Sten Johansson Johan Moverare 《Theoretical & Applied Mechanics Letters》 CAS 2014年第4期20-25,共6页
In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stai... In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromech- anisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650℃. 展开更多
关键词 dynamic strain ageing slow strain rate tensile testing FRACTURE DAMAGE
在线阅读 下载PDF
Experimental study on damage law of coal seam under hydraulic fracturing and blast load
3
作者 Haiyan Chen Hongzhao Wei +3 位作者 Jinhua Chen Wenxue Sun Huiyong Niu Chunmiao Yuan 《International Journal of Coal Science & Technology》 2025年第3期121-136,共16页
Compared with blast mining only,blast mining after on-site hydraulic fracturing can make the mining easier and obtain better mining outcomes.To explore the effects of hydraulic fracturing on the blasting damages in co... Compared with blast mining only,blast mining after on-site hydraulic fracturing can make the mining easier and obtain better mining outcomes.To explore the effects of hydraulic fracturing on the blasting damages in coal seam,blasting experiments were carried out under biaxial confining pressure using the synthetic coal briquettes.The coal briquettes with the same mechanical properties as coal seam were prepared and the mica sheets with different radi and thicknesses were added to simulate the internal hydraulic fractures of different radi and openings.The internal damage distributions and stress attenuations of the coal briquette specimens with different hydraulic fracture radi and openings after the blasting were then measured using a rock ultrasonic tester and a static-dynamic strainmeter.Based on the rock blasting theory,the effects of hydraulic fractures with different radi and openings on the blast fracture propagation and coal seam damage were analyzed.The following conclusions are drawn:(1)The increases in hydraulic fracture radius mainly enhance the damages in the vertical direction to the hydraulic fracture,and can increase the vertical range of the severely damaged area by 20-25 cm.The increases in the hydraulic fracture opening mainly cause more severe damages along the direction of the hydraulic fracture and increase the horizontal range of the severely damaged area by 30 cm.(2)The area of the severely damaged area caused by blasting increases by 550 cm?as the hydraulic fracture radius increased from 5 to 15 cm.As the hydraulic fracture opening increased from 2 to 10 mm,and the area of the severely damaged area caused by blasting increases by 650 cm?.Therefore,the hydraulic fracture opening has greater impacts on the severely damaged area.(3)The increase in the hydraulic fracture length reduces the compression phase attenuation of the blast stress in the radial direction.Both the increases of the hydraulic fracture length and opening increase the absolute value of the tensile phase in the radial direction.(4)Increasing the hydraulic fracture radius and opening can greatly promote the development of blast fractures and enhance the damages to coal seam.Therefore,the coal seam mining effect can be improved by increasing the radi or openings of hydraulic fractures to adjust the main action direction of blast fracture. 展开更多
关键词 Hydraulic fracture Fracture propagation law Blasting damage strain test Ultrasonic damage detection
在线阅读 下载PDF
Calibration of anisotropic yield function by introducing plane strain test instead of equi-biaxial tensile test 被引量:3
4
作者 Jie ZHU Shang-yu HUANG +2 位作者 Wei LIU Jian-hua HU Xi-fan ZOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2308-2314,共7页
The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane str... The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxialtesting machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method byusing plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSialloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similarwith the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provideexperimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function. 展开更多
关键词 aluminum alloy sheet anisotropic behavior yield function parameter identification plane strain test
在线阅读 下载PDF
SCC evaluation of a 2297 Al-Li alloy rolled plate using the slow-strain rate technique 被引量:4
5
作者 Kuo ZHAO Jianhua LIU +1 位作者 Mei YU Songmei LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2516-2525,共10页
The stress corrosion cracking(SCC) susceptibility of 2297 Al-Li alloy in 1 M Na Cl +0.01 M H2O2 solution(CP solution) and 1 M NaCl + 0.01 M H2O2+ 0.6 M Na2SO4 solution(CPS solution) was investigated by slow-strain rat... The stress corrosion cracking(SCC) susceptibility of 2297 Al-Li alloy in 1 M Na Cl +0.01 M H2O2 solution(CP solution) and 1 M NaCl + 0.01 M H2O2+ 0.6 M Na2SO4 solution(CPS solution) was investigated by slow-strain rate tests at various strain rates ranging from 10-5s(-1) to 10-7s-1. The roles of H2O2 and SO42-in the corrosion process were estimated by potentiodynamic polarization and electrochemical impedance spectroscopy. 2297 Al-Li alloy does not fracture ascribed to SCC in CP solution, while it undergoes SCC in CPS solution. In CPS solution,with a decreasing strain rate from 10-5s(-1) to 10-7s-1, the SCC susceptibility firstly rises and then declines exhibiting a peak value at a strain rate of 10-6s-1. H2O2 promotes the active dissolution while SO42- lowers the corrosion rate. The SCC fracture is associated with a decline in the dissolution rate of the crack tip by SO42-, which leads to stress concentration. In CPS solution, a reduction in the local dissolution rate of the crack tip leads to stress concentration, resulting in SCC fracture.As the preferred initiation site for a crack, pits also show a noteworthy effect on SCC of 2297 Al-Li alloy. 展开更多
关键词 Al-Li alloy DISSOLUTION Electrochemical behavior Slow strain rate testing Stress corrosion cracking
原文传递
Whole Field Strain Measurement of High Strength Steel Under Plain Strain Condition 被引量:1
6
作者 SMITH Lorenzo M 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期320-324,共5页
Sheet metal undergoes different strain conditions during different forming processes.The investigation of mechanical properties under these conditions is very important in the forming techniques.Sheet metal is particu... Sheet metal undergoes different strain conditions during different forming processes.The investigation of mechanical properties under these conditions is very important in the forming techniques.Sheet metal is particularly liable to failure under plain strain state.Measure and investigate the necking strain under plane strain condition is a particularly important study for sheet formability forecasting.In this study,material behavior of DP780 high strength steel sheet under plain strain condition was studied.Conventional plane strain tensile tests were carried out on the MTS testing machine with a special designed specimen.A digital image correlation system was employed to measure the full-field strain distribution during plain strain tensile test.The strain evolution during deformation was obtained and investigated.The capability of the specimen for plane strain test was validated from the strain distributions.The necking strain and fracture strain of DP780 high strength steel sheet were determined from the strain field and strain history results. 展开更多
关键词 plain strain test strain history FRACTURE high strength steel digital image correlation
原文传递
Damage Identification in Beam-Type Structures Using Pseudo Strain Energy Density and Grey Relation Coefficient
7
作者 陈晓强 朱宏平 +1 位作者 张俊兵 李林 《Transactions of Tianjin University》 EI CAS 2010年第2期96-103,共8页
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify th... Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model. 展开更多
关键词 damage identification strain test data pseudo strain energy density grey relation coefficient genetic algorithm polyvinylidens fluoride
在线阅读 下载PDF
Effects of Strain Rate on Stress Corrosion of S355 Steel in 3.5% NaCl Solutions
8
作者 金亦富 SHENG Tianyuan +3 位作者 KONG Weicheng ZHANG Ruihong WANG Wenchang 孔德军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1381-1386,共6页
The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the dif... The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the different strain rates in the solution were investigated, and the fracture morphologies and compositions of corrosion products under the different strain rates were analyzed with scanning electron microscopy(SEM) and energy dispersive spectrometerry(EDS), respectively. The experimental results show that the SCC sensitivity index is the highest when the strain rate is 2×10-6, and the medium corrosion is the main reason resulting in the highest SCC sensitivity index. The SCC sensitivity index is the least when the strain rate is 5×10-6, and the stress is the main reason resulting in the stress corrosion. The SCC sensitivity index is the middle when the strain rate is 9×10-6, the interaction of stress and medium is the stress corrosion fracture mechanism. 展开更多
关键词 strain rate slow strain rate test S355 steel stress corrosion fracture morphology
原文传递
High-frequency interference in low strain integrity testing of large-diameter pipe piles 被引量:19
9
作者 DING XuanMing LIU HanLong ZHANG Bo 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第2期420-430,共11页
The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diamet... The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures should be adopted to weaken high-frequency interference such as using soft hammer, hammer cushion and adoptingsuitable receiving point. 展开更多
关键词 large-diameter pipe pile low strain integrity testing high-frequency interference vibratory response analytic solution
原文传递
Stress Corrosion Cracking of Nitrogen-containing Stainless Steel 316LN in High Temperature Water Environments 被引量:10
10
作者 YANG Wu LI Guangfu +2 位作者 HUANG Chunbo ZHOU Jianjiang LU Zhanpeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期677-683,共7页
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ... Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs. 展开更多
关键词 nitrogen-containing stainless steel stress corrosion cracking (SCC) potential SENSITIZATION slow strain rate test (SSRT)
在线阅读 下载PDF
SHAPE MEMORY EFFECT OF PU IONOMERS WITH IONIC GROUPS ON HARD-SEGMENTS 被引量:6
11
作者 胡金莲 Kwok-wing Yeung 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第2期173-186,共14页
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) wer... SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content. 展开更多
关键词 Polyurethane IONOMERS Cyclic thermo-mechanical investigations Shape memory effect Cyclic tensile test strain recovery test.
在线阅读 下载PDF
Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW 被引量:6
12
作者 Ji-Jin Xu Shuai Wang +3 位作者 Ze Chai Chun Yu Jun-Mei Chen Hao Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第4期579-589,共11页
The stress corrosion cracking(SCC)behaviour of AISI 304 pipe girth welds which were welded by a single-pass laser beam welding(LBW)and a multi-pass tungsten inert gas welding(TIG),respectively,was studied by the slow ... The stress corrosion cracking(SCC)behaviour of AISI 304 pipe girth welds which were welded by a single-pass laser beam welding(LBW)and a multi-pass tungsten inert gas welding(TIG),respectively,was studied by the slow strain rate tests combined with the electrochemical corrosion tests.The results show that fracture of both the TIG joint and LBW joint occurs in the heat-affected zone(HAZ).According to the electron-backscattered diffraction observation of the micro structures,comparison of potentiodynamic polarization curves and X-ray photoelectron spectroscopy analysis of corrosion products on HAZs of the two joints after the electrochemical tests,the LBW joint exhibits better SCC resistance than the TIG joint in corrosion environments,due to the synthetic effect of more Cr_(2)O_(3) in corrosion products,finer grains,lower residual strain and higher δ-ferrite content in its HAZ.Although the TIG joint has better mechanical property,considering lower SCC susceptibility and higher production efficiency of the LBW joint,the LBW promisingly replaces the TIG for welding of AISI304 pipes in the nuclear power industry. 展开更多
关键词 Laser beam welding Slow strain rate test Stress corrosion cracking Tungsten inert gas welding AISI 304 stainless steel
原文传递
Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldments 被引量:6
13
作者 P.B.SRINIVASAN S.RIEKEHR +2 位作者 C.BLAWERT W.DIETZEL M.KO AK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期1-8,共8页
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater... An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC. 展开更多
关键词 AZ31 magnesium alloy laser welding microstructure mechanical properties slow strain rate tensile test stress corrosion cracking FRACTOGRAPHY
在线阅读 下载PDF
Influence of Zn Content on Microstructures,Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy 被引量:3
14
作者 Zhixiong Zhu Xingxu Jiang +5 位作者 Gang Wei Xiaogang Fang Zhihong Zhong Kuijing Song Jian Han Zhengyi Jiang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1369-1378,共10页
To enhance the stress corrosion cracking(SCC)resistance,Zn was utilized as an alloy element to add in the AA5083 aluminum alloys.The effects of Zn content on the microstructures,mechanical properties and SCC resistanc... To enhance the stress corrosion cracking(SCC)resistance,Zn was utilized as an alloy element to add in the AA5083 aluminum alloys.The effects of Zn content on the microstructures,mechanical properties and SCC resistance were systematically evaluated.The results demonstrate that in the studied range adding Zn can significantly improve the SCC resistance of the AA5083 alloys.This is related to the relatively low amount of continuous β(Al3Mg2)phase along grain boundary and the formation of Zn-containing phase such as Al5Mg11Zn4 phase.Based on the results,the optimal Zn content with respect to SCC resistance is approximately 0.50 wt.%.Further increasing Zn content results in coarse precipitates discontinuously distributed along grain boundaries. 展开更多
关键词 AA5083 aluminum alloy Slow strain rate test PRECIPITATION Stress corrosion cracking
原文传递
Investigation into Hydrogen Diffusion and Susceptibility of Hydrogen Embrittlement of High Strength 0Cr16Ni5Mo Steel 被引量:3
15
作者 Yong-wei SUN Ji-zhi CHEN Jun LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第10期961-968,共8页
High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hy... High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hydrogen permeation, thermal desorption spectroscopy (TDS), slow strain rate test (SSRT) and microstructure observation. The hydrogen concentration of both 10.9 grade (Rm=950-1 150 MPa) and 12.9 grade (Rm=1 150-1 250 MPa) bolt steels increases with increasing the hydrogen charging current densities and charging time. The 12.9 grade bolt steel has higher apparent diffusion coefficient than 10.9 grade steel, corresponding to the value of 4.7×10 7 mm^2/s. By means of TDS tests, the activation energies of the two experimental steels are 17.74 kJ/mol and 18.92 kJ/mol, respectively. The hydrogen traps of both grade bolt steels are dislocations and crystal lattice. The notch tensile strength of the steels is reduced with the hydrogen concentration carried out by SSRT. The fracture morphologies of the steels after hydrogen charging present ductile dimple and quasi-cleavage characteristic. 展开更多
关键词 0Cr16Ni5Mo steel hydrogen diffusion hydrogen permeation thermal desorption spectroscopy slow strain rate test
原文传递
Damage characteristics and constitutive modeling of the 2D C/Si C composite: Part I – Experiment and analysis 被引量:12
16
作者 Li Jun Jiao Guiqiong +2 位作者 Wang Bo Yang Chengpeng Wang Gang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1586-1597,共12页
This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens wit... This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens with 15, 30, and 45 off-axis angles were prepared and tested under monotonic and incremental cyclic tension and compression loads. The obtained results were compared with those of uniaxial tension, compression, and shear specimens. The relationships between the damage modes and the stress state were analyzed based on scanning electronic microscopy(SEM) observations and acoustic emission(AE) data. The test results reveal the remarkable axial anisotropy and unilateral behavior of the material. The off-axis tension test results show that the material is fiber-dominant and the evolution rate of damage and inelastic strain is accelerated under the corresponding combined biaxial tension and shear loads. Due to the damage impediment effect of compression stress, compression specimens show higher mechanical properties and lower damage evolution rates than tension specimens with the same off-axis angle. Under cyclic tension–compression loadings, both on-axis and off-axis specimens exhibit progressive damage deactivation behaviors in the compression range, but with different deactivation rates. 展开更多
关键词 Ceramic matrix composites Damage Inelastic strain Mechanical testing Strength
原文传递
Behavior of Stress Corrosion Cracking in a Magnesium Alloy 被引量:3
17
作者 宋仁国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第1期111-113,共3页
Slow strain rate testing (SSRT) was employed to study the stress corrosion cracking (SCC) behavior of ZE41 magnesium alloy in 0.01 M NaCl solution. Smooth tensile specimens with different thicknesses were strained... Slow strain rate testing (SSRT) was employed to study the stress corrosion cracking (SCC) behavior of ZE41 magnesium alloy in 0.01 M NaCl solution. Smooth tensile specimens with different thicknesses were strained dynamically in both longitudinal and transverse direction under permanent immersions at a strain rate of 10-6 s-1. It is found that ZE41 magnesium alloy is susceptible to SCC in 0.01 M NaCl solution. The SCC susceptibility of the thinner specimen is lower than that of the thicker specimen. Also, the longitudinal specimens are slightly more susceptible to SCC than the transverse specimens. The SCC mechanism of magnesium alloy is attributed to the combination of anodic dissolution with hydrogen embrittlement. 展开更多
关键词 magnesium alloy stress corrosion cracking slow strain rate testing (SSRT)
原文传递
Hydrogen-induced cracking behaviors of Incoloy alloy 825 被引量:2
18
作者 Yong-jin Yang Ke-wei Gao Chang-feng Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期58-62,共5页
The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results sh... The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results show that surface microcracks form gradually during ag- ing at room temperature when desorption of hydrogen takes place after hydrogen charging at a current density of 5 mA/cm^2 for 24 h. SSRT shows that the increase of ductility loss is significantly obvious as the hydrogen charging current density increases. Scanning electron microscopy (SEM) images reveal ductile fracture in the pre-charged sample with low current densities, while the fracture includes small quasi-cleavage regions and tends to be brittle fracture as the hydrogen charging current density increases to 5 mA/cm^2. 展开更多
关键词 Incoloy alloy hydrogen-induced cracking diffusible hydrogen slow strain rate testing
在线阅读 下载PDF
Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete thin-wall pipe piles 被引量:2
19
作者 Hanlong LIU Xuanming DING 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第2期180-186,共7页
The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement re... The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption. 展开更多
关键词 pipe pile low strain integrity testing dynamic response transient wave three-dimensional effect
原文传递
Temperature-Dependent SRS Behavior of 316L and Its Constitutive Model 被引量:2
20
作者 Jian Peng Jian Peng +2 位作者 Kai-Shang Li Jun-Feng Pei Chang-Yu Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第3期234-244,共11页
The strain rate sensitivity(SRS)and temperature sensitivity(TS)of 316L austenitic stainless steel were investigated by constant strain rate test(CSRT)and strain rate jump test(SRJT)under four temperatures(293... The strain rate sensitivity(SRS)and temperature sensitivity(TS)of 316L austenitic stainless steel were investigated by constant strain rate test(CSRT)and strain rate jump test(SRJT)under four temperatures(293,373,473 and 573 K)and four strain rates(5 ×10^-4/s,1 × 10^-3/s,5 × 10^-3/s and 1 × 10^-2/s).The results show that temperature sensitivity(TS)indexes at different strain rates are coincidence to be negative,related to temperature softening.On the contrary,SRS indexes change from positive to negative with the increase in temperature associated with dynamic strain aging(DSA).Moreover,based on the comparison between CSRT and SRJT,SRS and TS indexes obtained by two methods agree well.It proves that the SRJT can describe the SRS and TS phenomenon of 316L efficiently.Furthermore,the effects of tem-perature and strain rate on fracture mechanism were discussed.At last,an improved Johnson-Cook model was proposed to consider the temperature-dependent SRS behavior of 316L. 展开更多
关键词 strain rate sensitivity strain rate jump test Improved Johnson-Cook model
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部