The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig...The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.展开更多
Understanding strain and fracture evolution in rock masses under climate change is crucial for slope stability.This study presents a fully coupled thermo-hydro-mechanical(THM)simulation of a rock slope at the Požá...Understanding strain and fracture evolution in rock masses under climate change is crucial for slope stability.This study presents a fully coupled thermo-hydro-mechanical(THM)simulation of a rock slope at the Požáry test site in the Czech Republic,integrating field tests and laboratory analyses.The simulations used the exactly measured slope geometry and incorporated a pre-existing upper slope fracture.Key constitutive models for fluid and vapor flow,heat conduction,and porosity-dependent permeability were coupled with a viscoplastic damage model to capture the THM behavior of the rock slope.Laboratory tests on three rock samples(A,B,and C)with varying elastic moduli and porosities informed the material properties for three corresponding models.Simulation results showed greater thermal changes in the upper sections of the slope due to increased exposure to thermal effects.Model A,with the highest elastic modulus,exhibited lower initial strain changes,while Model C showed significant early strain variations.After 30 d,Model A experienced a sudden strain decrease due to thermal contraction-induced damage.The critical fractured zone(CFZ)analysis revealed that rock contraction under cooling led to an increase in pore water pressure,exacerbating the damage.Model B highlighted the impact of geometrical asymmetry on the propagation of the damaged zone.Over time,the thermal effects increased plastic deformation in Model A,while Model C remained elastic and exhibited no damage.These findings have significant implications for assessing rock slope stability,particularly in predicting failure zones due to permeability reduction and pore water pressure generation.展开更多
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co...This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface.展开更多
This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the in...This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the initial normal load(Fsd),cyclic shear dis-placement amplitude(ud),frequency(f),and rock type on the shear load,normal displacement,shear wear characteristics,and strain field evolution.The experimental results showed that as Fsd increased from 7.5 to 120 kN,both the peak and residual shear loads exhibited in-creasing trends,with increments ranging from 1.98%to 35.25%and from 32.09%to 86.74%,respectively.The maximum shear load of each cycle declined over the cyclic shear cycles,with the rate of decrease slowing and stabilizing,indicating that shear wear primarily oc-curred at the initial cyclic shear stage.During cyclic shearing,the normal displacement decreased spirally with the shear displacement,im-plying continuous shear contraction.The spiral curves display sparse upwards and dense downward trends,with later cycles dominated by dynamic sliding along the pre-existing shear rupture surface,which is particularly evident in coal.The bearing capacity of the anchoring system varies with the rock type and is governed by the coal strength in coal,resin-rock bonding in sandstone#1 and sandstone#2,com-bined resin strength and resin-rock bonding in sandstone#3(sandstone#1,sandstone#2 and sandstone#3,increasing strength order),and resin strength and bolt-resin bonding in limestone.Cyclic shear loading induces anisotropic interfacial degradation,characterized by es-calating strain concentrations and predominant resin-rock interface debonding,with the damage severity modulated by the rock type.展开更多
An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopt...An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes.展开更多
The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges,including the optimization of key enzymes,pathway fluxes and metabolic networ...The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges,including the optimization of key enzymes,pathway fluxes and metabolic networks.Addressing these challenges involves the development of synthetic auxotrophs,a strategy that links cell growth with enzyme properties or biosynthetic pathways.This linkage allows for the improvement of enzyme properties by in vivo directed enzyme evolution,the enhancement of metabolic pathway fluxes under growth pressure,and remodeling of metabolic networks through directed strain evolution.The advantage of employing synthetic auxotrophs lies in the power of growth-coupled selection,which is not only high-throughput but also labor-saving,greatly simplifying the development of both strains and enzymes.Synthetic auxotrophs play a pivotal role in advancing microbial cell factories,offering benefits from enzyme optimization to the manipulation of metabolic networks within single microbes.Furthermore,this strategy extends to coculture systems,enabling collaboration within microbial communities.This review highlights the recently developed applications of synthetic auxotrophs as microbial cell factories,and discusses future perspectives,aiming to provide a practical guide for growth-coupled models to produce value-added chemicals as part of a sustainable biorefinery.展开更多
基金the National Natural Science Foundation of China(Nos.52204114,52274145,U22A20165,and 52174089)the Natural Science Foundation of Jiangsu Province(No.BK20210522)+2 种基金the National Key Research and Development Program of China(No.2022YFE0128300)the China Postdoctoral Science Foundation(No.2023M733758)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202302037).
文摘The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.
基金support from the European Commission via a Marie Curie Fellowship(Grant No.101033084)awarded to Dr.Saeed Tourchi(corresponding author)the Research Grant Office at Sharif University of Technology for grants G4010902 and QB020105funding from the TACR project SS02030023,Rock Environment and Resources,under the“Environment for Life”program and the Institutional Research Plan RVO67985891 of the Institute of Rock Structure and Mechanics of the Czech Academy of Sciences.
文摘Understanding strain and fracture evolution in rock masses under climate change is crucial for slope stability.This study presents a fully coupled thermo-hydro-mechanical(THM)simulation of a rock slope at the Požáry test site in the Czech Republic,integrating field tests and laboratory analyses.The simulations used the exactly measured slope geometry and incorporated a pre-existing upper slope fracture.Key constitutive models for fluid and vapor flow,heat conduction,and porosity-dependent permeability were coupled with a viscoplastic damage model to capture the THM behavior of the rock slope.Laboratory tests on three rock samples(A,B,and C)with varying elastic moduli and porosities informed the material properties for three corresponding models.Simulation results showed greater thermal changes in the upper sections of the slope due to increased exposure to thermal effects.Model A,with the highest elastic modulus,exhibited lower initial strain changes,while Model C showed significant early strain variations.After 30 d,Model A experienced a sudden strain decrease due to thermal contraction-induced damage.The critical fractured zone(CFZ)analysis revealed that rock contraction under cooling led to an increase in pore water pressure,exacerbating the damage.Model B highlighted the impact of geometrical asymmetry on the propagation of the damaged zone.Over time,the thermal effects increased plastic deformation in Model A,while Model C remained elastic and exhibited no damage.These findings have significant implications for assessing rock slope stability,particularly in predicting failure zones due to permeability reduction and pore water pressure generation.
基金Projects(52174092,42472338,51904290)supported by the National Natural Science Foundation of ChinaProject(BK20220157)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2022YCPY0202)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface.
基金The financial support from the National Natural Science Foundation of China(Nos.52174092,42472338,and 51904290)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining,Ministry of Education(Anhui University of Science and Technology)(No.JYBSYS202311)。
文摘This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the initial normal load(Fsd),cyclic shear dis-placement amplitude(ud),frequency(f),and rock type on the shear load,normal displacement,shear wear characteristics,and strain field evolution.The experimental results showed that as Fsd increased from 7.5 to 120 kN,both the peak and residual shear loads exhibited in-creasing trends,with increments ranging from 1.98%to 35.25%and from 32.09%to 86.74%,respectively.The maximum shear load of each cycle declined over the cyclic shear cycles,with the rate of decrease slowing and stabilizing,indicating that shear wear primarily oc-curred at the initial cyclic shear stage.During cyclic shearing,the normal displacement decreased spirally with the shear displacement,im-plying continuous shear contraction.The spiral curves display sparse upwards and dense downward trends,with later cycles dominated by dynamic sliding along the pre-existing shear rupture surface,which is particularly evident in coal.The bearing capacity of the anchoring system varies with the rock type and is governed by the coal strength in coal,resin-rock bonding in sandstone#1 and sandstone#2,com-bined resin strength and resin-rock bonding in sandstone#3(sandstone#1,sandstone#2 and sandstone#3,increasing strength order),and resin strength and bolt-resin bonding in limestone.Cyclic shear loading induces anisotropic interfacial degradation,characterized by es-calating strain concentrations and predominant resin-rock interface debonding,with the damage severity modulated by the rock type.
基金National Science Foundation Council State KeyLaboratory of Frozen Soil Engineering (SKLFSE200504)State Commonweal Research Project (2002DIB30076)
文摘An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes.
基金supported by the National Key R&D Program of China(Grant No.2022YFC2106100)the National Natural Science Foundation of China(Grant Nos.22078011,22378016,and 22238001)Guangdong Key Area Research and Development Program(Grant No.2022B1111080003).
文摘The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges,including the optimization of key enzymes,pathway fluxes and metabolic networks.Addressing these challenges involves the development of synthetic auxotrophs,a strategy that links cell growth with enzyme properties or biosynthetic pathways.This linkage allows for the improvement of enzyme properties by in vivo directed enzyme evolution,the enhancement of metabolic pathway fluxes under growth pressure,and remodeling of metabolic networks through directed strain evolution.The advantage of employing synthetic auxotrophs lies in the power of growth-coupled selection,which is not only high-throughput but also labor-saving,greatly simplifying the development of both strains and enzymes.Synthetic auxotrophs play a pivotal role in advancing microbial cell factories,offering benefits from enzyme optimization to the manipulation of metabolic networks within single microbes.Furthermore,this strategy extends to coculture systems,enabling collaboration within microbial communities.This review highlights the recently developed applications of synthetic auxotrophs as microbial cell factories,and discusses future perspectives,aiming to provide a practical guide for growth-coupled models to produce value-added chemicals as part of a sustainable biorefinery.