This paper presents a finite element framework for imposing frictional contact conditions on embedded fracture faces,implemented by the constant-strain assumed enhanced strain(AES)method,where penalty method is used t...This paper presents a finite element framework for imposing frictional contact conditions on embedded fracture faces,implemented by the constant-strain assumed enhanced strain(AES)method,where penalty method is used to impose both non-penetration constraint and Coulomb’s law of friction.The proposed constant-strain AES method for modeling embedded frictional contact can be cast into an integration algorithm similar to those used in the classical plasticity theory,where displacement jump is calculated from the local traction equilibrium at Gauss point,so the method does not introduce any additional global degrees of freedom.Moreover,constant-strain elements are often desirable in practice because they can be easily created automatically for large-scale engineering applications with complicated geometries.As encountered in other enriched finite element methods for frictional contact,the problem of normal contact pressure oscillations is also observed in the constant-strain AES method.Therefore,we developed a strain-smoothing procedure to effectively mitigate the oscillations.We investigated and verified the proposed AES framework through several numerical examples,and illustrated the capability of this method in solving challenging nonlinear frictional contact problems.展开更多
Welding is commonly employed to connect large-scale components in practical engineering.Predicting the resulting deforma-tion and residual stresses during the welding process is typically essential.The thermal-elastic...Welding is commonly employed to connect large-scale components in practical engineering.Predicting the resulting deforma-tion and residual stresses during the welding process is typically essential.The thermal-elastic-plastic method simulates the welding process by examining heat distribution and elastic-plastic stresses.Despite its high computational accuracy,this method is often time-consuming,rendering it less suitable for large component welding predictions.In contrast,the inherent strain method skips the welding process and fo-cuses on the inherent strain in the weld and joint areas post-welding.This method is fast and convenient,particularly suitable for the analysis of large and complex structures.The results show that the error rate is 4.6%when using the inherent strain method to calculate the welding deformation of the test plate.In the calculation of welded parts,the error rate is 5%,which is within the tolerance of the actual engineering.In this paper,the simulation accuracy of the deformation results of the inherent strain method is validated by simulating fusion vacuum ves-sel mockup,aiming to reduce the cost of welding analysis by using this method and to provide reference for practical welding applications.展开更多
Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Re...Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Results demonstrate that according to the principle of reducing the overall height of the building and reducing the support structure with a large tilt angle from the building direction,the residual stress and deformation can be effectively reduced by proper design of building posture and support before laser powder bed melting.Moreover,without the data of thermophysical property variation of Ti-6Al-4V artificial knee implants with temperature,predicting the residual stress and deformation with acceptable accuracy and reduced time cost can be achieved by the inherent strain model.展开更多
Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile stren...Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile strength and susceptibility to fracture because of the restricted microstructure design.Herein,we pro-pose a hydrothermal-freeze-thaw method to construct high-strength self-healing hydrogels with even in-terconnected networks and distinctive wrinkled surfaces.The integration of the wrinkled outer surface with the three-dimensional internal network confers the self-healing hydrogel with enhanced mechan-ical strength.This hydrogel achieves a tensile strength of 223 kPa,a breaking elongation of 442%,an adhesion strength of 57.6 kPa,and an adhesion energy of 237.2 J m-2.Meanwhile,the hydrogel demon-strates impressive self-repair capability(repair efficiency:93%).Moreover,the density functional theory(DFT)calculations are used to substantiate the stable existence of hydrogen bonding between the PPPBG hydrogel and water molecules which ensures the durability of the PPPBG hydrogel for long-term applica-tion.The measurements demonstrate that this multifunctional hydrogel possesses the requisite sensitivity and durability to serve as a strain sensor,which monitors a spectrum of motion signals including subtle vocalizations,pronounced facial expressions,and limb articulations.This work presents a viable strategy for healthcare monitoring,soft robotics,and interactive electronic skins.展开更多
Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequen...Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequently changes its antigenicity through rapid mutations,leading to decreased vaccine efficacy or even failure.To improve vaccine effectiveness,it is necessary to monitor antigenic variation and update vaccine strains when significant antigenic variation occurs(Perofsky and Nelson,2020;Malik et al.,2024).展开更多
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla...The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.展开更多
Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing e...Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials.展开更多
A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious eff...A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious effect on the texture evolution of near-αtitanium alloys during the hot metal forming.In this paper,the texture evolution of a near-αTA15 titanium alloy during the hot metal forming under different strain states were discussed based on the crystal plasticity finite element method.It is found that the basal and prismatic slip systems are regarded as the dominant slip modes due to the similar low critical resolved shear stress during the hot metal forming of the TA15 sheet rotating the lattice around the[1010]and 0001 axis,respectively.Once both of them cannot be activated,the pyramidal-2 slipping occurs rotating the lattice around the[1010]axis.The relationship between the texture evolution and strain state is established.All the(0001)orientations form a band perpendicular to the direction of the first principal strain.The width of the band along the direction of the second principal strain depends on the ratio of the compressive effect to the tensile effect of the second principal strain.This relationship can help control the crystallographic texture and mechanical properties of the titanium alloys component during the hot metal forming.展开更多
In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Ma...In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.展开更多
Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables,...Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.展开更多
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility...The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2021FZZX001-14)and ZJU-ZCCC Institute of Collaborative Innovation (Grant No.ZDJG2021005).
文摘This paper presents a finite element framework for imposing frictional contact conditions on embedded fracture faces,implemented by the constant-strain assumed enhanced strain(AES)method,where penalty method is used to impose both non-penetration constraint and Coulomb’s law of friction.The proposed constant-strain AES method for modeling embedded frictional contact can be cast into an integration algorithm similar to those used in the classical plasticity theory,where displacement jump is calculated from the local traction equilibrium at Gauss point,so the method does not introduce any additional global degrees of freedom.Moreover,constant-strain elements are often desirable in practice because they can be easily created automatically for large-scale engineering applications with complicated geometries.As encountered in other enriched finite element methods for frictional contact,the problem of normal contact pressure oscillations is also observed in the constant-strain AES method.Therefore,we developed a strain-smoothing procedure to effectively mitigate the oscillations.We investigated and verified the proposed AES framework through several numerical examples,and illustrated the capability of this method in solving challenging nonlinear frictional contact problems.
基金supported by the National Key Scientific and Technological Infrastructure Construction Project(No.2018-000052-73-01-001228)National Natural Science Foundation of China Young Scientists Fund Project(12105185)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2023-06).
文摘Welding is commonly employed to connect large-scale components in practical engineering.Predicting the resulting deforma-tion and residual stresses during the welding process is typically essential.The thermal-elastic-plastic method simulates the welding process by examining heat distribution and elastic-plastic stresses.Despite its high computational accuracy,this method is often time-consuming,rendering it less suitable for large component welding predictions.In contrast,the inherent strain method skips the welding process and fo-cuses on the inherent strain in the weld and joint areas post-welding.This method is fast and convenient,particularly suitable for the analysis of large and complex structures.The results show that the error rate is 4.6%when using the inherent strain method to calculate the welding deformation of the test plate.In the calculation of welded parts,the error rate is 5%,which is within the tolerance of the actual engineering.In this paper,the simulation accuracy of the deformation results of the inherent strain method is validated by simulating fusion vacuum ves-sel mockup,aiming to reduce the cost of welding analysis by using this method and to provide reference for practical welding applications.
基金Natural Science Foundation of Shandong Province(ZR2020ME020)。
文摘Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Results demonstrate that according to the principle of reducing the overall height of the building and reducing the support structure with a large tilt angle from the building direction,the residual stress and deformation can be effectively reduced by proper design of building posture and support before laser powder bed melting.Moreover,without the data of thermophysical property variation of Ti-6Al-4V artificial knee implants with temperature,predicting the residual stress and deformation with acceptable accuracy and reduced time cost can be achieved by the inherent strain model.
基金supported by the National Natural Science Foundation of China(Nos.U21A6004,U21A20172,61804091,21574076,and U1510121)the Science and Technology Major Project of Shanxi(No.202101030201022)+1 种基金the Fundamental Research Program of Shanxi Province(No.202103021223019)the Open Fund of the Key Lab of Organic Optoelectronics&Molecular Engineering.
文摘Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile strength and susceptibility to fracture because of the restricted microstructure design.Herein,we pro-pose a hydrothermal-freeze-thaw method to construct high-strength self-healing hydrogels with even in-terconnected networks and distinctive wrinkled surfaces.The integration of the wrinkled outer surface with the three-dimensional internal network confers the self-healing hydrogel with enhanced mechan-ical strength.This hydrogel achieves a tensile strength of 223 kPa,a breaking elongation of 442%,an adhesion strength of 57.6 kPa,and an adhesion energy of 237.2 J m-2.Meanwhile,the hydrogel demon-strates impressive self-repair capability(repair efficiency:93%).Moreover,the density functional theory(DFT)calculations are used to substantiate the stable existence of hydrogen bonding between the PPPBG hydrogel and water molecules which ensures the durability of the PPPBG hydrogel for long-term applica-tion.The measurements demonstrate that this multifunctional hydrogel possesses the requisite sensitivity and durability to serve as a strain sensor,which monitors a spectrum of motion signals including subtle vocalizations,pronounced facial expressions,and limb articulations.This work presents a viable strategy for healthcare monitoring,soft robotics,and interactive electronic skins.
基金upported by the Major Project of Guangzhou National Laboratory(GZNL2024A01002)National Key Plan for Scientific Research and Development of China(2022YFC2303802)+1 种基金National Natural Science Foundation of China(32170651&32370700)Hunan Provincial Natural Science Foundation of China(2024JJ2015).
文摘Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequently changes its antigenicity through rapid mutations,leading to decreased vaccine efficacy or even failure.To improve vaccine effectiveness,it is necessary to monitor antigenic variation and update vaccine strains when significant antigenic variation occurs(Perofsky and Nelson,2020;Malik et al.,2024).
文摘The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
基金National Natural Science Foundation of China (90405016, 10676028) 973 Program (2006CB601205)+1 种基金 863 Project (2006AA04Z 122) Aeronautical Science Foundation (04B53080, 2006ZA 53006) and 111 Project (B07050)
文摘Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials.
基金financially supported by the National Natural Science Foundation of China(No.51401065).
文摘A thorough understanding of the texture evolution of near-αtitanium alloys during the hot metal forming can help obtain an optimal crystallographic texture and material performance.The strain state has an obvious effect on the texture evolution of near-αtitanium alloys during the hot metal forming.In this paper,the texture evolution of a near-αTA15 titanium alloy during the hot metal forming under different strain states were discussed based on the crystal plasticity finite element method.It is found that the basal and prismatic slip systems are regarded as the dominant slip modes due to the similar low critical resolved shear stress during the hot metal forming of the TA15 sheet rotating the lattice around the[1010]and 0001 axis,respectively.Once both of them cannot be activated,the pyramidal-2 slipping occurs rotating the lattice around the[1010]axis.The relationship between the texture evolution and strain state is established.All the(0001)orientations form a band perpendicular to the direction of the first principal strain.The width of the band along the direction of the second principal strain depends on the ratio of the compressive effect to the tensile effect of the second principal strain.This relationship can help control the crystallographic texture and mechanical properties of the titanium alloys component during the hot metal forming.
文摘In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.
基金Ministry of Construction of China through the Science and Technique Program Grant No.06-k6-13Guangzhou Construction Technological Development Foundation through Grant No.200409+1 种基金Guangdong Province Natural Science Foundation through Grant No.5300381 Guangzhou Science and Technique Bureau through Science and Technique Program Grant No.2006J1-C0451
文摘Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
基金supported by the National Natural Science Foundation of China(No.51475022)
文摘The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.