期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mitigating Straggler Effect in Federated Learning Based on Reconfigurable Intelligent Surface over Internet of Vehicles 被引量:1
1
作者 Li Zejun Wu Hao +2 位作者 Lu Yunlong Dai Yueyue Ai Bo 《China Communications》 SCIE CSCD 2024年第8期62-78,共17页
To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station ... To protect vehicular privacy and speed up the execution of tasks,federated learning is introduced in the Internet of Vehicles(IoV)where users execute model training locally and upload local models to the base station without massive raw data exchange.However,heterogeneous computing and communication resources of vehicles cause straggler effect which weakens the reliability of federated learning.Dropping out vehicles with limited resources confines the training data.As a result,the accuracy and applicability of federated learning models will be reduced.To mitigate the straggler effect and improve performance of federated learning,we propose a reconfigurable intelligent surface(RIS)-assisted federated learning framework to enhance the communication reliability for parameter transmission in the IoV.Furthermore,we optimize the phase shift of RIS to achieve a more reliable communication environment.In addition,we define vehicular competence to measure both vehicular trustworthiness and resources.Based on the vehicular competence,the straggler effect is mitigated where training tasks of computing stragglers are offloaded to surrounding vehicles with high competence.The experiment results verify that our proposed framework can improve the reliability of federated learning in terms of computing and communication in the IoV. 展开更多
关键词 reliable federated learning RIS straggler effect vehicular competence
在线阅读 下载PDF
面向工业物联网的时延感知半同步联邦学习客户端资源联合调度方案
2
作者 王晔 施颖 +3 位作者 夏天乐 刘淼 杨洁 赵海涛 《物联网学报》 2025年第4期194-205,共12页
联邦学习作为一种灵活且可扩展的分布式机器学习方法,在工业物联网(IIoT,industrial Internet of things)中得到了广泛应用,在保护数据隐私的同时,实现低时延、低通信开销和高精度的模型训练。然而,由于工业物联网中边缘设备的计算能力... 联邦学习作为一种灵活且可扩展的分布式机器学习方法,在工业物联网(IIoT,industrial Internet of things)中得到了广泛应用,在保护数据隐私的同时,实现低时延、低通信开销和高精度的模型训练。然而,由于工业物联网中边缘设备的计算能力和通信能力的异构性,传统同步联邦学习面临“落后者效应”,即服务器需要等待所有客户端完成本地模型参数上传,显著降低训练效率,难以满足工业物联网对低时延服务的需求。为了解决这一问题并降低设备异构性带来的训练时延,提出了一种基于半同步机制的异构工业联邦学习框架,并在此基础上设计了一种基于训练时延效益评分的客户端选择方案,以提升训练效率。此外,为了提高网络频谱资源的利用率,基于全局训练时延均衡的数学关系,提出了一种自适应设备数量的带宽分配机制,优化被选客户端的模型上传策略。大量仿真结果表明,与基于加权平均的联邦学习(FedAvg,federated averaging)和结合客户端选择的联邦学习(FedCS,federated learning with client selection)等基准方案相比,所提方法在模型准确度、系统时延及频谱利用率等方面均具有显著优势。 展开更多
关键词 工业物联网 联邦学习 落后者效应 客户端调度 资源分配
在线阅读 下载PDF
Privacy-Preserving Federated Averaging on Heterogeneous Data
3
作者 Lingjie Zhang Xiao Guo Hai Zhang 《Acta Mathematica Sinica,English Series》 2025年第10期2573-2592,共20页
Federated learning(FL)has becoming a prevailing paradigm which enables small-scale devices to collaboratively learn a shared model efficiently and trains a machine learning model without exchanging data.However,though... Federated learning(FL)has becoming a prevailing paradigm which enables small-scale devices to collaboratively learn a shared model efficiently and trains a machine learning model without exchanging data.However,though the original data never leave the local machines in federated learning,possible privacy leakage still exists.To make strong privacy guarantee,in this paper,we incorporate the notion of differential privacy(DP)to study the federated averaging(FedAvg)algorithm.In particular,by adding calibrated gaussian noise,we propose a set of differentially private federated averaging algorithms(DP-FedAvg)under the full and partial participation schemes.We provide tight analysis of the privacy bound by using advanced composition and privacy amplification techniques.We also analyze the convergence bound of DP-FedAvg without having the assumptions:(i)the data are the independent identically distribution(IID),and(ii)all the devices are active.It turns out that the convergence rate is consistent with the one without DP guarantee.The effectiveness of our algorithms is demonstrated by synthetic and real datasets. 展开更多
关键词 Differential privacy federated learning privacy amplification stragglers’effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部