Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive mode...Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R2 and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data.展开更多
Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional...Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running pertur- bation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton); which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.展开更多
In this paper, the parametric tropical cyclone models for storm surge modeling are further developed. Instead of tangential wind speed via cyclostrophic balance and radial wind speed using a simple formulation of defe...In this paper, the parametric tropical cyclone models for storm surge modeling are further developed. Instead of tangential wind speed via cyclostrophic balance and radial wind speed using a simple formulation of defection angle, the analyrical expressions of tangential and radial wind speed distribution are derived from the governing momentum equations based on the general symmetric pressure distribution of Holland and Fujita. The radius of the maximum wind is estimated by tropical cyclone wind structure which is characterized by the radial extent of special wind speed. The shape parameter in the pressure model is estimated by the data of several tropical cyclones that occurred in the East China Sea. Finally, the Fred cyclone (typhoon 199417) is calculated, and comparisons of the measured and calculated air pressures and wind speed are presented.展开更多
A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent s...A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent snow storm over southern China and the impact of the Madden Julian oscillation (MJO) on this persistent snow storm were investigated. Compared with the stand-alone RegCM3, the coupled model performed better at reproducing the spatial-temporal evolution and intensity of the precipitation episodes. The power spectral analysis indicated that the coupled model successfully captured the dominant period between 30 and 60 days in the precipitation field, leading to a notable improvement in simulating the magnitude of intraseasonal precipitation variation, and further in enhancing the intensity of the simulated precipitation. These improvements were mainly due to the well-simulated low-frequency oscillation center and its eastward propagation characteristics in each MJO phase by RegCM3-POM, which improved the simulations of MJO-related low-frequency vertical motions, water vapor transport, and the deep inversion layer that can directly influence the precipitation event and that further improved the simulated MJOprecipitation relationship. Analysis of the phase relationship between convection and SST indicated that RegCM3-POM exhibits a near-quadrature relation between the simulated convection and SST anomalies, which was consistent with the observations. However, such a near-quadrature relation was not as significant when the stand-alone RegCM3 was used. This difference indicated that the inherent coupled feedback process between the ocean and atmosphere in RegCM3-POM played an important part in reproducing the features of the MJO that accompanied the snow storm.展开更多
The relationships between the water qualities of nitrogen and phosphorous contents in the discharge water and the discharge of storm runoff of an experimental catchment including terraced paddy field are analyzed base...The relationships between the water qualities of nitrogen and phosphorous contents in the discharge water and the discharge of storm runoff of an experimental catchment including terraced paddy field are analyzed based on experiment results of the catchment. By summarizing the currently related research on water quality models, the water quality models of different components of storm runoff of the catchment are presented and verified with the experiment data of water quality analyses and the corresponding discharge of the storm runoffs during 3 storms. Through estimating the specific discharge of storm runoff, the specific load of different components of nitrogen and phosphorus in the discharge water of the catchment can be forecasted by the models. It is found that the mathematical methods of linear regression are very useful for analysis of the relationship between the concentrations of nitrogen and phosphorus and the water discharge of storm runoff. It is also found that the most content of the nitrogen (75%) in the discharge water is organic, while half of the content (49%) of phosphorus in the discharge water is inorganic.展开更多
The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human liv...The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.展开更多
Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms...Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum e- quations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.展开更多
Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green ...Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.展开更多
The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e ar...The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e artificial neural networks (ANN) is proposed for simula ting the runoff in storm events. The study uses the data from a coa stal forest catchment located in Seto Inland Sea, Japan. This article studies the accuracy of the short-term rainfall forecast obta ined by ANN time-series analysis techniques and using antecedent rainfa ll depths and stream flow as the input information. The verification results from the proposed model indicate that the approach of ANN rai nfall-runoff model presented in this paper shows a reasonable agreement in rainfall-runoff modeling with high accuracy.展开更多
In this paper,the two parametric tropical cyclone models for storm surge modeling are further developed.The analytical expressions of tangential and radial velocity distribution are derived from the governing momentum...In this paper,the two parametric tropical cyclone models for storm surge modeling are further developed.The analytical expressions of tangential and radial velocity distribution are derived from the governing momentum equations,based on the general symmetric pressure distribution proposed by Holland and Fujita.On the basis of the data of several tropical cyclones that occurred in East China Ocean,the shape parameter in pressure model is estimated.Finally,the Fred cyclone(typhoon 199417)is calculated,and comparisons of measured and calculated air pressures and wind speed are presented.展开更多
Storm surges are abnormal rises in sea level along coastal areas and are mainly formed by strong wind and atmospheric depressions. When storm surges coincide with high tide, coastal flooding can occur. Creating storm ...Storm surges are abnormal rises in sea level along coastal areas and are mainly formed by strong wind and atmospheric depressions. When storm surges coincide with high tide, coastal flooding can occur. Creating storm surge prediction systems has been an important and operational task worldwide. This study developed a coupled tide and storm surge numerical model of the seas around Taiwan for operational purposes at the Central Weather Bureau. The model was calibrated and verified by using tidal records from seas around Taiwan. Model skill was assessed based on measured records, and the results are presented in details. At 3-minute resolution, tides were generally well predicted, with the root mean-square errors of less than 0.11 m and an overall correlation of more than 0.9. Storms (winds and depressions) were introduced into the model forcing by using the parameter typhoon model. Five typical typhoons that threatened Taiwan were simulated for assessment. The surges were well predicted compared with the records.展开更多
Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November...Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November to May (NM) over SWIO were conducted. Dynamic parameters including vertical wind shear, mean zonal steering wind and vorticity at 850 mb were derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermodynamic parameters including monthly and daily mean Sea Surface Temperature (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard Oscillation Index (SOI) were used. Three types of Poison regression models (i.e. dynamic, thermodynamic and combined models) were developed and validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 × 2 square matrix contingency tables for model verification were used. The results revealed that, the observed and cross validated DJFM and NM TCs and TSs strongly correlated with each other (p ≤ 0.02) for all model types, with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, indicating great association between these variables. Assessment of the model skill for all model types of DJFM and NM TCs and TSs frequency revealed high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs frequency, respectively. Moreover, results indicated that the dynamic and combined models had higher skill scores than the thermodynamic models. The DJFM and NM selected predictors explained the TCs and TSs variability by the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification analysis revealed that all models were adequate for predicting the seasonal TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the study calls for more studies in TCs and TSs frequency and strengths for enhancing the performance of the March to May (MAM) and December to October (OND) seasonal rainfalls in the East African (EA) and Tanzania in particular.展开更多
In this work,the daily height variations of SZ-5(Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed,which includes the period of the Halloween Storm and the Great November Storm.The significant orbi...In this work,the daily height variations of SZ-5(Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed,which includes the period of the Halloween Storm and the Great November Storm.The significant orbital decays have been observed at the end of October and in late November due to the great solar flares and the severe geomagnetic storms.According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information,the relative daily average thermospheric density changes during the three 2003 super-storms are derived and the results are compared with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model(NRLMSISE-00).The results show that the daily average thermospheric density(at the altitude of SZ-5,about 350 km) in storm time enhances to approximately 200% as much as that in the quiet time but the empirical model may somewhat underestimate the average thermospheric density changes and the daily contributions of geomagnetic storms to the density enhancements during these severe space weather events.展开更多
When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea,the Simulating Waves Nearshore(SWAN)model and Advanced CIRCulation(ADCIRC)model were coupled to simul...When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea,the Simulating Waves Nearshore(SWAN)model and Advanced CIRCulation(ADCIRC)model were coupled to simulate 32 storm surges between 1985 and 2014.This simulation was validated by reproducing three actual wave processes,showing that the simulated significant wave height(SWH)and mean wave period agreed well with the actual measurements.In addition,the long-term variations in SWH,pattems in SWH extremes along the Bohai Sea coast,the 100-year retum period SWH extreme distribution,and waves conditional probability distribution were calculated and analyzed.We find that the trend of SWH extremes in most of the coastal stations was negative,among which the largest trend was-0.03 m/a in the western part of Liaodong Bay.From the 100-year return period of the SWH distribution calculated in the Gumbel method,we find that the SWH extremes associated with storm surges decreased gradually from the center of the Bohai Sea to the coast.In addition,the joint probability of wave and surge for the entire Bohai Sea in 100-year return period was determined by the Gumbel logistic method.We therefore,assuming a minimum surge of one meter across the entire Bohai Sea,obtained the spatial SWH distribution.The conclusions of this study are significant for offshore and coastal engineering design.展开更多
Storm surges are one of the most dangerous natural phenomena for the estuary of the Amur River. The generation of surges in this area was investigated by means of a two-dimensional numerical model. The accuracy of the...Storm surges are one of the most dangerous natural phenomena for the estuary of the Amur River. The generation of surges in this area was investigated by means of a two-dimensional numerical model. The accuracy of the numerical calculation was verified by comparison of computed and observed sea levels. A series of numerical experiments was executed to estimate the influence of hypothetical anthropogenic processes on the variation of maximum storm surge heights.展开更多
The Jiangsu coastal area is located in central-eastern China and is well known for complicated dynamics with large-scale radial sand ridge systems. It is therefore a challenge to simulate typhoon-induced storm surges ...The Jiangsu coastal area is located in central-eastern China and is well known for complicated dynamics with large-scale radial sand ridge systems. It is therefore a challenge to simulate typhoon-induced storm surges in this area. In this study, a two-dimensional astronomical tide and storm surge coupling model was established to simulate three typical types of typhoons in the area. The Holland parameter model was used to simulate the wind field and wind pressure of the typhoon and the Japanese 55-year reanalysis data were added as the background wind field. The offshore boundary information was provided by an improved Northwest Pacific Ocean Tide Model. Typhoon-induced storm surges along the Jiangsu coast were calculated based on analysis of wind data from 1949 to 2013 and the spatial distribution of the maximum storm surge levels with different types of typhoons, providing references for the design of sea dikes and planning for control of coastal disasters.展开更多
When strong solar activities and geomagnetic storms happen, satellite communications and navigation system will be strongly disturbed. It is of great significance to monitor ionospheric disturbances,because empirical ...When strong solar activities and geomagnetic storms happen, satellite communications and navigation system will be strongly disturbed. It is of great significance to monitor ionospheric disturbances,because empirical models cannot capture ionospheric anomalous disturbances well. Nowadays, dualfrequency GPS(Global Positioning System) observations can be used to estimate the ionospheric total electron content, correct the ionospheric delay and analyze the response of the ionosphere to geomagnetic storms. In this paper, the ionospheric response to the geomagnetic storm occurred in March 2015 is investigated using GPS observations provided by Crustal Movement of Observation Network of China. The result shows that this storm increases the electron density in the ionosphere quickly and disrupts the structure of the northern equatorial anomaly region at the beginning. In the main process stage, compared with that in the quite periods, the VTEC(Vertical Total Electron Content)around the longitude of 120°E decreases by 50% and the amount of depletion is larger in the high latitude region than that in the low latitude region. We also find the height of the peak electron density in F2 layer increases during the geomagnetic storm from the electron density profiles derived from GPS occultation mission.展开更多
基金supported by the Korea Ministry of Environment, as "The Eco-innovation Project" (No. 413111-003)
文摘Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R2 and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data.
基金supported by the Presidium of the Russian Academy of Sciences in the framework of the theme 'Disasters'
文摘Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running pertur- bation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton); which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909065 and 50879047)
文摘In this paper, the parametric tropical cyclone models for storm surge modeling are further developed. Instead of tangential wind speed via cyclostrophic balance and radial wind speed using a simple formulation of defection angle, the analyrical expressions of tangential and radial wind speed distribution are derived from the governing momentum equations based on the general symmetric pressure distribution of Holland and Fujita. The radius of the maximum wind is estimated by tropical cyclone wind structure which is characterized by the radial extent of special wind speed. The shape parameter in the pressure model is estimated by the data of several tropical cyclones that occurred in the East China Sea. Finally, the Fred cyclone (typhoon 199417) is calculated, and comparisons of the measured and calculated air pressures and wind speed are presented.
基金supported by grants from the National Basic Research Program of China (973 Program,Grant Nos.2012CB955901 and 2011CB952002)the National Science and Technology Support Program of China (Grant No.2009BAC51B03)the National Natural Science Foundation of China (Grant Nos. 41105044 and 41105045)
文摘A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent snow storm over southern China and the impact of the Madden Julian oscillation (MJO) on this persistent snow storm were investigated. Compared with the stand-alone RegCM3, the coupled model performed better at reproducing the spatial-temporal evolution and intensity of the precipitation episodes. The power spectral analysis indicated that the coupled model successfully captured the dominant period between 30 and 60 days in the precipitation field, leading to a notable improvement in simulating the magnitude of intraseasonal precipitation variation, and further in enhancing the intensity of the simulated precipitation. These improvements were mainly due to the well-simulated low-frequency oscillation center and its eastward propagation characteristics in each MJO phase by RegCM3-POM, which improved the simulations of MJO-related low-frequency vertical motions, water vapor transport, and the deep inversion layer that can directly influence the precipitation event and that further improved the simulated MJOprecipitation relationship. Analysis of the phase relationship between convection and SST indicated that RegCM3-POM exhibits a near-quadrature relation between the simulated convection and SST anomalies, which was consistent with the observations. However, such a near-quadrature relation was not as significant when the stand-alone RegCM3 was used. This difference indicated that the inherent coupled feedback process between the ocean and atmosphere in RegCM3-POM played an important part in reproducing the features of the MJO that accompanied the snow storm.
文摘The relationships between the water qualities of nitrogen and phosphorous contents in the discharge water and the discharge of storm runoff of an experimental catchment including terraced paddy field are analyzed based on experiment results of the catchment. By summarizing the currently related research on water quality models, the water quality models of different components of storm runoff of the catchment are presented and verified with the experiment data of water quality analyses and the corresponding discharge of the storm runoffs during 3 storms. Through estimating the specific discharge of storm runoff, the specific load of different components of nitrogen and phosphorus in the discharge water of the catchment can be forecasted by the models. It is found that the mathematical methods of linear regression are very useful for analysis of the relationship between the concentrations of nitrogen and phosphorus and the water discharge of storm runoff. It is also found that the most content of the nitrogen (75%) in the discharge water is organic, while half of the content (49%) of phosphorus in the discharge water is inorganic.
基金The National Natural Science Foundation of China under contract Nos 41372173 and 51609244the Geological Survey Projects of China Geological Survey under contract No.121201006000182401
文摘The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.
基金This project was supported by the National Natural Science Foundation of China under contract No. 40176001 and theHi-tech Rese
文摘Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum e- quations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.
文摘Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.
文摘The process of transformation of rainfall into runoff over a catchment is very complex and highly nonlinear and exhibits both tempor al and spatial variabilities. In this article, a rainfall-runoff model using th e artificial neural networks (ANN) is proposed for simula ting the runoff in storm events. The study uses the data from a coa stal forest catchment located in Seto Inland Sea, Japan. This article studies the accuracy of the short-term rainfall forecast obta ined by ANN time-series analysis techniques and using antecedent rainfa ll depths and stream flow as the input information. The verification results from the proposed model indicate that the approach of ANN rai nfall-runoff model presented in this paper shows a reasonable agreement in rainfall-runoff modeling with high accuracy.
基金Supported by the National Natural Science Foundation of China(50909065)
文摘In this paper,the two parametric tropical cyclone models for storm surge modeling are further developed.The analytical expressions of tangential and radial velocity distribution are derived from the governing momentum equations,based on the general symmetric pressure distribution proposed by Holland and Fujita.On the basis of the data of several tropical cyclones that occurred in East China Ocean,the shape parameter in pressure model is estimated.Finally,the Fred cyclone(typhoon 199417)is calculated,and comparisons of measured and calculated air pressures and wind speed are presented.
文摘Storm surges are abnormal rises in sea level along coastal areas and are mainly formed by strong wind and atmospheric depressions. When storm surges coincide with high tide, coastal flooding can occur. Creating storm surge prediction systems has been an important and operational task worldwide. This study developed a coupled tide and storm surge numerical model of the seas around Taiwan for operational purposes at the Central Weather Bureau. The model was calibrated and verified by using tidal records from seas around Taiwan. Model skill was assessed based on measured records, and the results are presented in details. At 3-minute resolution, tides were generally well predicted, with the root mean-square errors of less than 0.11 m and an overall correlation of more than 0.9. Storms (winds and depressions) were introduced into the model forcing by using the parameter typhoon model. Five typical typhoons that threatened Taiwan were simulated for assessment. The surges were well predicted compared with the records.
文摘Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November to May (NM) over SWIO were conducted. Dynamic parameters including vertical wind shear, mean zonal steering wind and vorticity at 850 mb were derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermodynamic parameters including monthly and daily mean Sea Surface Temperature (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard Oscillation Index (SOI) were used. Three types of Poison regression models (i.e. dynamic, thermodynamic and combined models) were developed and validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 × 2 square matrix contingency tables for model verification were used. The results revealed that, the observed and cross validated DJFM and NM TCs and TSs strongly correlated with each other (p ≤ 0.02) for all model types, with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, indicating great association between these variables. Assessment of the model skill for all model types of DJFM and NM TCs and TSs frequency revealed high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs frequency, respectively. Moreover, results indicated that the dynamic and combined models had higher skill scores than the thermodynamic models. The DJFM and NM selected predictors explained the TCs and TSs variability by the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification analysis revealed that all models were adequate for predicting the seasonal TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the study calls for more studies in TCs and TSs frequency and strengths for enhancing the performance of the March to May (MAM) and December to October (OND) seasonal rainfalls in the East African (EA) and Tanzania in particular.
基金Supported by the Natural Science Foundation of China(41574178,41874187,41774152,41774195)Grant from CAS Key Laboratory of Geospace Environment,University of Science and Technology of China
文摘In this work,the daily height variations of SZ-5(Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed,which includes the period of the Halloween Storm and the Great November Storm.The significant orbital decays have been observed at the end of October and in late November due to the great solar flares and the severe geomagnetic storms.According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information,the relative daily average thermospheric density changes during the three 2003 super-storms are derived and the results are compared with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model(NRLMSISE-00).The results show that the daily average thermospheric density(at the altitude of SZ-5,about 350 km) in storm time enhances to approximately 200% as much as that in the quiet time but the empirical model may somewhat underestimate the average thermospheric density changes and the daily contributions of geomagnetic storms to the density enhancements during these severe space weather events.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the Public Science and Technology Research Projects of Ocean(No.201305020-4)
文摘When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea,the Simulating Waves Nearshore(SWAN)model and Advanced CIRCulation(ADCIRC)model were coupled to simulate 32 storm surges between 1985 and 2014.This simulation was validated by reproducing three actual wave processes,showing that the simulated significant wave height(SWH)and mean wave period agreed well with the actual measurements.In addition,the long-term variations in SWH,pattems in SWH extremes along the Bohai Sea coast,the 100-year retum period SWH extreme distribution,and waves conditional probability distribution were calculated and analyzed.We find that the trend of SWH extremes in most of the coastal stations was negative,among which the largest trend was-0.03 m/a in the western part of Liaodong Bay.From the 100-year return period of the SWH distribution calculated in the Gumbel method,we find that the SWH extremes associated with storm surges decreased gradually from the center of the Bohai Sea to the coast.In addition,the joint probability of wave and surge for the entire Bohai Sea in 100-year return period was determined by the Gumbel logistic method.We therefore,assuming a minimum surge of one meter across the entire Bohai Sea,obtained the spatial SWH distribution.The conclusions of this study are significant for offshore and coastal engineering design.
文摘Storm surges are one of the most dangerous natural phenomena for the estuary of the Amur River. The generation of surges in this area was investigated by means of a two-dimensional numerical model. The accuracy of the numerical calculation was verified by comparison of computed and observed sea levels. A series of numerical experiments was executed to estimate the influence of hypothetical anthropogenic processes on the variation of maximum storm surge heights.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant No.41606042)
文摘The Jiangsu coastal area is located in central-eastern China and is well known for complicated dynamics with large-scale radial sand ridge systems. It is therefore a challenge to simulate typhoon-induced storm surges in this area. In this study, a two-dimensional astronomical tide and storm surge coupling model was established to simulate three typical types of typhoons in the area. The Holland parameter model was used to simulate the wind field and wind pressure of the typhoon and the Japanese 55-year reanalysis data were added as the background wind field. The offshore boundary information was provided by an improved Northwest Pacific Ocean Tide Model. Typhoon-induced storm surges along the Jiangsu coast were calculated based on analysis of wind data from 1949 to 2013 and the spatial distribution of the maximum storm surge levels with different types of typhoons, providing references for the design of sea dikes and planning for control of coastal disasters.
基金supported by the NSFC (National Natural Science Foundation of China) Project (11573052)
文摘When strong solar activities and geomagnetic storms happen, satellite communications and navigation system will be strongly disturbed. It is of great significance to monitor ionospheric disturbances,because empirical models cannot capture ionospheric anomalous disturbances well. Nowadays, dualfrequency GPS(Global Positioning System) observations can be used to estimate the ionospheric total electron content, correct the ionospheric delay and analyze the response of the ionosphere to geomagnetic storms. In this paper, the ionospheric response to the geomagnetic storm occurred in March 2015 is investigated using GPS observations provided by Crustal Movement of Observation Network of China. The result shows that this storm increases the electron density in the ionosphere quickly and disrupts the structure of the northern equatorial anomaly region at the beginning. In the main process stage, compared with that in the quite periods, the VTEC(Vertical Total Electron Content)around the longitude of 120°E decreases by 50% and the amount of depletion is larger in the high latitude region than that in the low latitude region. We also find the height of the peak electron density in F2 layer increases during the geomagnetic storm from the electron density profiles derived from GPS occultation mission.