Polymer science continues to play a transformative role in materials innovation,enabling breakthroughs across diverse domains including energy storage,flexible electronics,surface engineering,and soft robotics.At the ...Polymer science continues to play a transformative role in materials innovation,enabling breakthroughs across diverse domains including energy storage,flexible electronics,surface engineering,and soft robotics.At the heart of these advances lies a critical,often defining factor:the interface.Whether between polymers and solid substrates,liquids,gases,or other polymers,interfacial phenomena govern adhesion,wetting,energy dissipation,chemical reactivity,and signal transmission.Interfaces are not passive boundaries but active zones of complexity and function,where molecular interactions shape material performance at every scale—from nanometers to entire devices.展开更多
文摘Polymer science continues to play a transformative role in materials innovation,enabling breakthroughs across diverse domains including energy storage,flexible electronics,surface engineering,and soft robotics.At the heart of these advances lies a critical,often defining factor:the interface.Whether between polymers and solid substrates,liquids,gases,or other polymers,interfacial phenomena govern adhesion,wetting,energy dissipation,chemical reactivity,and signal transmission.Interfaces are not passive boundaries but active zones of complexity and function,where molecular interactions shape material performance at every scale—from nanometers to entire devices.