Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurabi...In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untru...The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption(NC-MACPABE). NC-MACPABE optimizes the weighted access structure(WAS) allowing different levels of operation on the same file in cloud storage system. The concept of identity dyeing is introduced to improve the users' information privacy further. The re-encryption algorithm is improved in the scheme so that the data owner can revoke user's access right in a more flexible way. The scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience when a large number of users apply for accesses to the cloud storage system at the same time.展开更多
The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in ...The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).展开更多
Ciphertext policy attribute based encryption(CP-ABE)can provide high finegrained access control for cloud storage.However,it needs to solve problems such as property privacy protection,ciphertext search and data updat...Ciphertext policy attribute based encryption(CP-ABE)can provide high finegrained access control for cloud storage.However,it needs to solve problems such as property privacy protection,ciphertext search and data update in the application process.Therefore,based on CP-ABE scheme,this paper proposes a dynamically updatable searchable encryption cloud storage(DUSECS)scheme.Using the characteristics of homomorphic encryption,the encrypted data is compared to achieve efficient hiding policy.Meanwhile,adopting linked list structure,the DUSECS scheme realizes the dynamic data update and integrity detection,and the search encryption against keyword guessing attacks is achieved by combining homomorphic encryption with aggregation algorithm.The analysis of security and performance shows that the scheme is secure and efficient.展开更多
Cloud storage is a service involving cloud service providers providingstorage space to customers. Cloud storage services have numerous advantages,including convenience, high computation, and capacity, thereby attracti...Cloud storage is a service involving cloud service providers providingstorage space to customers. Cloud storage services have numerous advantages,including convenience, high computation, and capacity, thereby attracting usersto outsource data in the cloud. However, users outsource data directly via cloudstage services that are unsafe when outsourcing data is sensitive for users. Therefore, cipher text-policy attribute-based encryption is a promising cryptographicsolution in a cloud environment, and can be drawn up for access control by dataowners (DO) to define access policy. Unfortunately, an outsourced architectureapplied with attribute-based encryption introduces numerous challenges, including revocation. This issue is a threat to the data security of DO. Furthermore,highly secure and flexible cipher text-based attribute access control with role hierarchy user grouping in cloud storage is implemented by extending the KUNodes(revocation) storage identity-based encryption. Result is evaluated using Cloudsim, and our algorithm outperforms in terms of computational cost by consuming32 MB for 150-MB files.展开更多
When it comes to data storage,cloud computing and cloud storage providers play a critical role.The cloud data can be accessed from any location with an internet connection.Additionally,the risk of losing privacy when ...When it comes to data storage,cloud computing and cloud storage providers play a critical role.The cloud data can be accessed from any location with an internet connection.Additionally,the risk of losing privacy when data is stored in a cloud environment is also increased.A variety of security techniques are employed in the cloud to enhance security.In this paper,we aim at maintaining the privacy of stored data in cloud environment by implementing block-based modelling to boost the privacy level with Anti-Codify Technique(ACoT)and block cipher-based algorithms.Initially,the cipher text is generated using Deoxyribo Nucleic Acid(DNA)model.Block-cipher-based encryption is used by ACoT,but the original encrypted file and its extension are broken up into separate blocks.When the original file is broken up into two separate blocks,it raises the security level and makes it more difficult for outsiders to cloud data access.ACoT improves the security and privacy of cloud storage data.Finally,the fuzzy-based classification is used that stores various access types in servers.The simulation results shows that the ACoT-DNA method achieves higher entropy against various block size with reduced computational cost than existing methods.展开更多
Big data cloud platforms provide users with on-demand configurable computing,storage resources to users,thus involving a large amount of user data.However,most of the data is processed and stored in plaintext,resultin...Big data cloud platforms provide users with on-demand configurable computing,storage resources to users,thus involving a large amount of user data.However,most of the data is processed and stored in plaintext,resulting in data leakage.At the same time,simple encrypted storage ensures the confidentiality of the cloud data,but has the following problems:if the encrypted data is downloaded to the client and then decrypted,the search efficiency will be low.If the encrypted data is decrypted and searched on the server side,the security will be reduced.Data availability is finally reduced,and indiscriminate protection measures make the risk of data leakage uncontrollable.To solve the problems,based on searchable encryption and key derivation,a cipher search system is designed in this paper considering both data security and availability,and the use of a search encryption algorithm that supports dynamic update is listed.Moreover,the system structure has the advantage of adapting different searchable encryption algorithm.In particular,a user-centered key derivation mechanism is designed to realize file-level fine-grained encryption.Finally,extensive experiment and analysis show that the scheme greatly improves the data security of big data platform.展开更多
At present,the traditional blockchain for data storage and retrieval reflects the characteristics of slow data uploading speed,high cost,and transparency,and there are a lot of corresponding problems,such as not suppo...At present,the traditional blockchain for data storage and retrieval reflects the characteristics of slow data uploading speed,high cost,and transparency,and there are a lot of corresponding problems,such as not supporting private data storage,large data operation costs,and not supporting Data field query.This paper proposes a method of data encryption storage and retrieval based on the IOTA distributed ledger,combined with the fast transaction processing speed and zero-value transactions of the IOTA blockchain,through the Masked Authenticated Messaging technology,so that the data is encrypted in the data stream.The form is stored in the distributed ledger,quickly retrieved through the field index mechanism established by the data form,and the data operation is carried out on the chain.Experimental results show that this system has high storage,encryption and retrieval performance,and good practicability.展开更多
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com...A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac...Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).展开更多
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V...This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.展开更多
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi...Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects...Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects together. However, these schemes either only support plaintext data file or have been proved insecure. In this paper, we propose a public auditing scheme for cloud storage systems, in which deduplication of encrypted data and data integrity checking can be achieved within the same framework. The cloud server can correctly check the ownership for new owners and the auditor can correctly check the integrity of deduplicated data. Our scheme supports deduplication of encrypted data by using the method of proxy re-encryption and also achieves deduplication of data tags by aggregating the tags from different owners. The analysis and experiment results show that our scheme is provably secure and efficient.展开更多
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship...Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金the National Key R&D Program of China(Project No.2022YFB4700100)National Natural Science Foundation of China(Grant Nos.61973298)+2 种基金Hong Kong Research Grants Council(GRF Project Number 11216120)the CAS-RGC Joint Laboratory Funding Scheme(Project Number JLFS/E-104/18)the Innovation Promotion Research Association of the Chinese Academy of Sciences(NO.2022199)。
文摘In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.
基金Projects(61472192,61202004)supported by the National Natural Science Foundation of ChinaProject(14KJB520014)supported by the Natural Science Fund of Higher Education of Jiangsu Province,China
文摘The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption(NC-MACPABE). NC-MACPABE optimizes the weighted access structure(WAS) allowing different levels of operation on the same file in cloud storage system. The concept of identity dyeing is introduced to improve the users' information privacy further. The re-encryption algorithm is improved in the scheme so that the data owner can revoke user's access right in a more flexible way. The scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience when a large number of users apply for accesses to the cloud storage system at the same time.
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).
基金supported by the National Nature Science Foundation of China under grant No.(61562059,61461027,61462060)。
文摘Ciphertext policy attribute based encryption(CP-ABE)can provide high finegrained access control for cloud storage.However,it needs to solve problems such as property privacy protection,ciphertext search and data update in the application process.Therefore,based on CP-ABE scheme,this paper proposes a dynamically updatable searchable encryption cloud storage(DUSECS)scheme.Using the characteristics of homomorphic encryption,the encrypted data is compared to achieve efficient hiding policy.Meanwhile,adopting linked list structure,the DUSECS scheme realizes the dynamic data update and integrity detection,and the search encryption against keyword guessing attacks is achieved by combining homomorphic encryption with aggregation algorithm.The analysis of security and performance shows that the scheme is secure and efficient.
文摘Cloud storage is a service involving cloud service providers providingstorage space to customers. Cloud storage services have numerous advantages,including convenience, high computation, and capacity, thereby attracting usersto outsource data in the cloud. However, users outsource data directly via cloudstage services that are unsafe when outsourcing data is sensitive for users. Therefore, cipher text-policy attribute-based encryption is a promising cryptographicsolution in a cloud environment, and can be drawn up for access control by dataowners (DO) to define access policy. Unfortunately, an outsourced architectureapplied with attribute-based encryption introduces numerous challenges, including revocation. This issue is a threat to the data security of DO. Furthermore,highly secure and flexible cipher text-based attribute access control with role hierarchy user grouping in cloud storage is implemented by extending the KUNodes(revocation) storage identity-based encryption. Result is evaluated using Cloudsim, and our algorithm outperforms in terms of computational cost by consuming32 MB for 150-MB files.
文摘When it comes to data storage,cloud computing and cloud storage providers play a critical role.The cloud data can be accessed from any location with an internet connection.Additionally,the risk of losing privacy when data is stored in a cloud environment is also increased.A variety of security techniques are employed in the cloud to enhance security.In this paper,we aim at maintaining the privacy of stored data in cloud environment by implementing block-based modelling to boost the privacy level with Anti-Codify Technique(ACoT)and block cipher-based algorithms.Initially,the cipher text is generated using Deoxyribo Nucleic Acid(DNA)model.Block-cipher-based encryption is used by ACoT,but the original encrypted file and its extension are broken up into separate blocks.When the original file is broken up into two separate blocks,it raises the security level and makes it more difficult for outsiders to cloud data access.ACoT improves the security and privacy of cloud storage data.Finally,the fuzzy-based classification is used that stores various access types in servers.The simulation results shows that the ACoT-DNA method achieves higher entropy against various block size with reduced computational cost than existing methods.
基金the Sichuan Science and Technology Program(2021JDRC0077)the Sichuan Province’s Key Research and Development Plan.“Distributed Secure StorageTechnology for Massive Sensitive Data”Project(2020YFG0298)Applied Basic Research Project of Sichuan Province(No.2018JY0370).
文摘Big data cloud platforms provide users with on-demand configurable computing,storage resources to users,thus involving a large amount of user data.However,most of the data is processed and stored in plaintext,resulting in data leakage.At the same time,simple encrypted storage ensures the confidentiality of the cloud data,but has the following problems:if the encrypted data is downloaded to the client and then decrypted,the search efficiency will be low.If the encrypted data is decrypted and searched on the server side,the security will be reduced.Data availability is finally reduced,and indiscriminate protection measures make the risk of data leakage uncontrollable.To solve the problems,based on searchable encryption and key derivation,a cipher search system is designed in this paper considering both data security and availability,and the use of a search encryption algorithm that supports dynamic update is listed.Moreover,the system structure has the advantage of adapting different searchable encryption algorithm.In particular,a user-centered key derivation mechanism is designed to realize file-level fine-grained encryption.Finally,extensive experiment and analysis show that the scheme greatly improves the data security of big data platform.
基金supported by the National Key Research and Development Program“Biological Information Security and Efficient Transmission”Project,Project Letter No.2017YFC1201204.
文摘At present,the traditional blockchain for data storage and retrieval reflects the characteristics of slow data uploading speed,high cost,and transparency,and there are a lot of corresponding problems,such as not supporting private data storage,large data operation costs,and not supporting Data field query.This paper proposes a method of data encryption storage and retrieval based on the IOTA distributed ledger,combined with the fast transaction processing speed and zero-value transactions of the IOTA blockchain,through the Masked Authenticated Messaging technology,so that the data is encrypted in the data stream.The form is stored in the distributed ledger,quickly retrieved through the field index mechanism established by the data form,and the data operation is carried out on the chain.Experimental results show that this system has high storage,encryption and retrieval performance,and good practicability.
文摘A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
文摘Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0909060001)the National Natural Science Foundation of China(No.52271213)。
文摘This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.
基金supported by National Natural Science Foundation of China(Nos.51806092,52201410)Non-Carbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program,High-End Foreign Experts Recruitment Plan of China(G2022013028L).
文摘Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金Supported by the National Natural Science Foundation of China(61373040,61173137)the Ph.D.Programs Foundation of Ministry of Education of China(20120141110002)the Key Project of Natural Science Foundation of Hubei Province(2010CDA004)
文摘Storage auditing and client-side deduplication techniques have been proposed to assure data integrity and improve storage efficiency, respectively. Recently, a few schemes start to consider these two different aspects together. However, these schemes either only support plaintext data file or have been proved insecure. In this paper, we propose a public auditing scheme for cloud storage systems, in which deduplication of encrypted data and data integrity checking can be achieved within the same framework. The cloud server can correctly check the ownership for new owners and the auditor can correctly check the integrity of deduplicated data. Our scheme supports deduplication of encrypted data by using the method of proxy re-encryption and also achieves deduplication of data tags by aggregating the tags from different owners. The analysis and experiment results show that our scheme is provably secure and efficient.
基金funded by the Inner Mongolia Nature Foundation Project,Project number:2023JQ04.
文摘Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.