期刊文献+
共找到6,038篇文章
< 1 2 250 >
每页显示 20 50 100
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
1
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 storage optimal scheduling Real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
Drivers of Groundwater Storage Dynamics in China's Ordos Mining Region:Integrating Natural and Anthropogenic Influences 被引量:1
2
作者 LIU Zhiqiang ZHANG Shengwei +5 位作者 FAN Wenjie HUANG Lei ZHANG Xiaojing LUO Meng YANG Lin ZHANG Zhiqi 《Chinese Geographical Science》 2025年第4期693-706,I0001,I0002,共16页
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ... Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions. 展开更多
关键词 groundwater reserves groundwater storage(GWS) terrestrial water storage(TWS) Gravity Recovery and Climate Experiment Satellite(GRACE) Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS) Ordos Mining Region China
在线阅读 下载PDF
Chak-hao,Forbidden Rice of Manipur and Its Sustainable Protection from Post-Harvest Storage Pests Using Indigenous Botanical Plant Powders
3
作者 Arati NINGOMBAM Aruna BEEMROTE +9 位作者 Romila AKOIJAM Sushmita THOKCHOM C.H.BASUDHA C.H.SONIA C.H.PREMABATI N.Ajitkumar SINGH L.Langlentombi CHANU Y.Prabhabati DEVI H.Lembisana DEVI A.Gangarani DEVI 《Rice science》 2025年第3期298-302,I0031,I0032,共7页
Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Althou... Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Although Chak-hao is a hardy landrace with field tolerance to biotic stress,its grains are highly susceptible to storage pest infestations,particularly those caused by the rice weevil(Sitophilus oryzae).This severely compromises its commercial storage quality,as pest damage reduces both nutritional value and quantity. 展开更多
关键词 geographical indication tag chak hao PESTS rice weevil sitophilus oryzae forbidden rice sustainable protection post harvest storage storage pest infestationsparticularly
在线阅读 下载PDF
Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning
4
作者 Steffen Schedler Michael Bareev-Rudy +1 位作者 Stefanie Meilinger Tanja Clees 《Energy Engineering》 2025年第5期1755-1770,共16页
Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot ... Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system. 展开更多
关键词 Hydrogen storage hybrid energy storage system simulation housing sector energy share
在线阅读 下载PDF
IEC releases 3 technical documents for electrical energy storage
5
《China Standardization》 2025年第4期14-14,共1页
In the process of building a new power system dominated by new energy sources,power storage is a key supporting technology that ensures the safe and stable operation of the power grid,enables the flexible regulation o... In the process of building a new power system dominated by new energy sources,power storage is a key supporting technology that ensures the safe and stable operation of the power grid,enables the flexible regulation of the system,and raises the level of new energy consumption.It is also key to achieving carbon peak and neutrality as well as energy transformation. 展开更多
关键词 carbon peak neutrality new energy sourcespower storage raises level new energy consumptionit technical documents power gridenables flexible regulation systemand electrical energy storage building new power system
原文传递
V–Ti‑Based Solid Solution Alloys for Solid‑State Hydrogen Storage
6
作者 Shaoyang Shen Yongan Li +3 位作者 Liuzhang Ouyang Lan Zhang Min Zhu Zongwen Liu 《Nano-Micro Letters》 2025年第7期453-482,共30页
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V... This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance. 展开更多
关键词 Hydrogen storage V-Ti-based solid solution alloys Metal hydride tank Hydrogen storage properties Cyclic stability
在线阅读 下载PDF
Day-Ahead Nonlinear Optimization Scheduling for Industrial Park Energy Systems with Hybrid Energy Storage
7
作者 Jiacheng Guo Yimo Luo +1 位作者 Bin Zou Jinqing Peng 《Engineering》 2025年第3期331-347,共17页
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.... Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage. 展开更多
关键词 Industrial park energy system Hybrid energy storage Active energy storage Configuration optimization Day-ahead optimal scheduling
在线阅读 下载PDF
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
8
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 Two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Temperature Control Performance and Cooling Release Characteristics of PCM in Large Space:Case Study of Cold Storage
9
作者 Zhengrong Shi Hai Hong +1 位作者 Yanming Shen Jingyong Cai 《Energy Engineering》 2025年第3期885-903,共19页
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi... Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction. 展开更多
关键词 Cold storage cold energy storage system PCM plates cooling release characteristics
在线阅读 下载PDF
Underground hydrogen storage in geological formations:A review
10
作者 Grant Charles Mwakipunda Allou Koffi Franck Kouassi +5 位作者 Edwin Twum Ayimadu Norga Alloyce Komba Mbula Ngoy Nadege Melckzedeck Michael Mgimba Mbega Ramadhani Ngata Long Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6704-6741,共38页
Surface hydrogen storage facilities are limited and costly,making subsurface hydrogen storage in geological formations a more viable alternative due to its substantial capacity,safety,and economic feasibility.This met... Surface hydrogen storage facilities are limited and costly,making subsurface hydrogen storage in geological formations a more viable alternative due to its substantial capacity,safety,and economic feasibility.This method is essential for large-scale hydrogen storage to support renewable energy integration,fuel cell technologies,and other applications aimed at mitigating global climate change.This review examines underground hydrogen storage(UHS)in geological formations,focusing on recent experiments,modeling and simulations,and field applications.Geological formations such as depleted oil reservoirs,salt caverns,and depleted natural gas reservoirs are identified as favorable candidates due to minimal interactions with hydrogen,leading to low hydrogen loss.Globally,80%of UHS projects utilize depleted natural gas and oil reservoirs,with over 50%focused on depleted natural gas and oil condensate reservoirs due to cost-effective existing infrastructure.Among storage options,salt caverns are the most advantageous,offering self-healing properties,low caprock permeability,large storage capacity,rapid injection and withdrawal rates,and low contamination risk.Additionally,hydrogen produced from coal is the cheapest option,costing 1.2e2 USD/kg,whereas hydrogen from renewable sources,such as water,is the most expensive at 3e13 USD/kg.Despite its higher cost,green hydrogen from water,characterized by low carbon emissions,requires further research to reduce production costs.This review highlights critical research gaps,challenges,and policy recommendations to advance UHS technologies,ensuring their role in combating climate change. 展开更多
关键词 Underground hydrogen storage(UHS) Geological formations Renewable energy storage capacity
在线阅读 下载PDF
Compressed air and hydrogen storage experimental facilities for sustainable energy storage technologies at Yunlong Lake Laboratory(CAPABLE)
11
作者 Xiaozhao Li Yukun Ji +5 位作者 Kai Zhang Chengguo Hu Jianguo Wang Lixin He Lihua Hu Bangguo Jia 《Deep Underground Science and Engineering》 2025年第3期341-353,共13页
In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure ... In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure design and material development.Underground gas storage can provide a solution to address the intermittency of renewable energy supply.Currently,lined rock caverns(LRCs)are regarded as the best option for compressed air and hydrogen storage,since they have excellent sealing properties and minimum environmental impacts.However,the load transfer,damage,and failure mechanisms of LRCs are not clear.This prevents the design and selection of mechanical structures.Particularly,the gas sealing capacity in specific gas conditions(e.g.,stored hydrogen-induced chemical reaction)remains poorly understood,and advanced materials to adapt the storage conditions of different gases should be developed.This experimental facility aims at providing a solution to these technical issues.This facility has several different types of LRCs,and study of the mechanical behavior of various structures and evaluation of the gas-tight performance of the sealing material can be carried out using a distributed fiberoptic sensing approach.The focus of this study is on the challenges in sealing material development and structure design.This facility facilitates large-scale and long-term energy storage for stable and continuous energy supply,and enables repurposing of underground space and acceleration of the realization of green energy ambitions in the context of Paris Agreement and China's carbon neutralization plan. 展开更多
关键词 compressed air energy storage experimental platform hydrogen storage lined rock cavern
原文传递
Non-stoichiometric Ni_(3)ZnC_(0.7)carbide loading on melamine sponge-derived carbon for hydrogen storage performance improvement of MgH_(2)
12
作者 Zi-Yin Dai Ping Wu +6 位作者 Li-Rong Xiao Hideo Kimura Chuan-Xin Hou Xue-Qin Sun Si-Jie Guo Wei Du Xiu-Bo Xie 《Rare Metals》 2025年第1期515-530,共16页
The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)... The high operating temperatures and slow kinetics limit the application of MgH_(2)-based hydrogen storage materials.Here,a composite of Ni_(3)ZnC_(0.7)/carbon nanotubes loaded onto a melamine sponge-derived carbon(MS)skeleton is prepared and loaded onto MgH_(2).During dehydrogenation,Ni_(3)ZnC_(0.7)reacts with MgH_(2)and in situ changes to Mg_(2)Ni/Zn.The transformation of Mg_(2)Ni/Mg_(2)NiH_(4) serves as a“hydrogen pump”,providing diffusion channels for hydrogen atoms and molecules to promote the de-/hydrogenation processes.Moreover,Zn/MgZn_(2) provides the catalytic sites for the transformation of Mg/MgH_(2).The length of the Mg-H bond is elongated from 1.72 to 1.995Å,and the dissociation energy barrier of MgH_(2)is reduced from 1.55 to 0.49 eV.As a result,MgH_(2)with 2.5 wt%MS@Ni_(3)ZnC_(0.7)can absorb 5.18 wt%H_(2)at 423 K within 200 s,and its initial dehydrogenation temperature is reduced to 585 K.After 20 cycles,the dehydrogenation capacity retention is determined to be 94.6%.This work demonstrates an efficient non-stoichiometric metal carbide catalyst for MgH_(2). 展开更多
关键词 Mg-based hydrogen storage materials Non-stoichiometric carbide Ni_(3)ZnC_(0.7) Multiple catalysts Hydrogen storage kinetics
原文传递
Hydrogen Energy Storage System:Review on Recent Progress 被引量:1
13
作者 MilleniumWong Hadi Nabipour Afrouzi 《Energy Engineering》 EI 2025年第1期1-39,共39页
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com... A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use. 展开更多
关键词 Hydrogen energy storage system VOSViewer DESIGN REVIEW SIZING
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
14
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit 被引量:1
15
作者 Yun Zhang Zifen Han +2 位作者 Biao Tian Ning Chen Yi Fan 《Energy Engineering》 EI 2025年第1期167-184,共18页
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,... The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units. 展开更多
关键词 Photovoltaic power suppression hybrid energy storage unit variationalmodal decomposition fuzzy control power distribution control
在线阅读 下载PDF
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
16
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:3
17
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage Phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems 被引量:2
18
作者 Jian Gao Hongliang Hao +4 位作者 Caifeng Wen Yongsheng Wang Zhanhua Han Edwin E.Nykilla Yuwen Zhang 《Energy Engineering》 2025年第3期1175-1198,共24页
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship... Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications. 展开更多
关键词 Wind power generation hybrid energy storage power quality PSD NSGA-II
在线阅读 下载PDF
Photolithographic Microfabrication of Microbatteries for On-Chip Energy Storage 被引量:1
19
作者 Yuan Ma Sen Wang Zhong-Shuai Wu 《Nano-Micro Letters》 2025年第5期117-144,共28页
Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configurati... Microbatteries(MBs)are crucial to power miniaturized devices for the Internet of Things.In the evolutionary journey of MBs,fabrication technology emerges as the cornerstone,guiding the intricacies of their configuration designs,ensuring precision,and facilitating scalability for mass production.Photolithography stands out as an ideal technology,leveraging its unparalleled resolution,exceptional design flexibility,and entrenched position within the mature semiconductor industry.However,comprehensive reviews on its application in MB development remain scarce.This review aims to bridge that gap by thoroughly assessing the recent status and promising prospects of photolithographic microfabrication for MBs.Firstly,we delve into the fundamental principles and step-by-step procedures of photolithography,offering a nuanced understanding of its operational mechanisms and the criteria for photoresist selection.Subsequently,we highlighted the specific roles of photolithography in the fabrication of MBs,including its utilization as a template for creating miniaturized micropatterns,a protective layer during the etching process,a mold for soft lithography,a constituent of MB active component,and a sacrificial layer in the construction of micro-Swiss-roll structure.Finally,the review concludes with a summary of the key challenges and future perspectives of MBs fabricated by photolithography,providing comprehensive insights and sparking research inspiration in this field. 展开更多
关键词 MICROBATTERIES PHOTOLITHOGRAPHY Internet of Things MICROPATTERNS On-chip energy storage
在线阅读 下载PDF
Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage 被引量:1
20
作者 Wenjing Xiong Yulin Xu +5 位作者 Fangzhou Zhao Baokai Xia Hongqiang Wang Wei Liu Sheng Chen Yongzhi Zhang 《Chinese Chemical Letters》 2025年第4期501-506,共6页
Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-ba... Carbon materials are considered as prospective anode candidates for potassium ion batteries(PIBs).However,the low-rate capability is hampered by slow K+diffusion kinetics and obstructed electron transport of carbon-based anodes.In this work,calcium D-gluconate derived mesoporous carbon nanosheets(CGC)were interpenetrated into the architecture of reduced graphene oxides(RGO)to form the composites of two-dimensional(2D)/2D graphene/mesoporous carbon nanosheets(RGO@CGC).CGC as a rigid skeleton can prevent the graphene layers from restacking and maintain the structural stability of the 2D/2D carbon composites of RGO@CGC.The mesopores in CGC can shorten the path of ion diffusion and facilitate the penetration of electrolytes.RGO possesses the high surface-to-volume ratio and superior electron transport capability in the honeycomb-like 2D network consisting of sp^(2)-hybridized carbon atoms.Especially,theπ-πstacking interaction between CGC and RGO enhances stable composite structure formation,expedites interlayer-electron transfer,and establishes three-dimensional(3D)ion transportation pathways.Owing to these unique structure,RGO@CGC exhibits fast and stable potassium storage capability.Furthermore,the effects of binders and electrolytes on the electrochemical performance of RGO@CGC were investigated.Finally,Prussian blue was synthesized as a positive electrode to explore the possibility of RGO@CGC as a full battery application. 展开更多
关键词 Potassium storage GRAPHENE Mesoporous carbon nanosheets Composite High-rate capability
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部