Grassland shrub encroachment is a phenomenon that is prevalent in arid and semi-arid regions worldwide,impacting grassland ecosystems in several ways.In the context of escalating climate change and human activities,ex...Grassland shrub encroachment is a phenomenon that is prevalent in arid and semi-arid regions worldwide,impacting grassland ecosystems in several ways.In the context of escalating climate change and human activities,examining the nutrient and stoichiometric characteristics of Spiraea shrubs in grassland ecosystems,along with their relationships with environmental factors,can yield valuable insights into the nutrient utilization and survival strategies of these shrubs.This,in turn,offers a scientific foundation for developing future conservation measures.This study was conducted in July 2023 in the Altay Mountains,Northwest China,where Spiraea shrubs thrive across five grassland types:temperate steppe desert,temperate desert steppe,temperate steppe,temperate meadow steppe,and mountain meadow.Leaf and soil samples were collected from each grassland type to analyze the concentrations of carbon(C),nitrogen(N),and phosphorus(P),as well as the stoichiometric characteristics of both the leaves and soil.Subsequently,correlation analysis and redundancy analysis(RDA)were conducted to investigate the variations in leaf C,N,and P concentrations and leaf stoichiometry of Spiraea shrubs as well as their influencing factors.The results indicated the presence of significant or highly significant differences(P<0.050)in the leaf C,N,and P concentrations and leaf stoichiometry(C:N,C:P,and N:P ratios)of Spiraea shrubs across the five grassland types.The N:P ratios of Spiraea shrub leaves in the five grassland types ranged from 7.37 to 11.77,suggesting that N availability generally limits the growth of Spiraea shrubs.Results of RDA revealed that the most significant contributors to the C,N,and P concentrations and stoichiometric characteristics of Spiraea shrub leaves were in the following order:soil total N>mean annual precipitation>elevation>soil pH>soil organic C>mean annual temperature.These factors had contribution rates of 35.32%,13.19%,10.20%,8.82%,8.34%,and 6.48%,respectively.It was determined that soil nutrients have a greater impact on the growth and nutrient accumulation of Spiraea shrubs compared to climatic factors.This study makes an important contribution to the theoretical basis and data support,enabling a deeper understanding of the response mechanisms of shrub species in the grassland ecosystems of the Altay Mountains to climate change.展开更多
Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant co...Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant community structure,especially in forests,has not been fully elucidated.We investigated 68 plots in larch forests in northern China to explore how plant community structure and environmental factors affect the N-P stoichiometry of soil and leaves.The results showed significant differences in soil and leaf N-P stoichiometry among the three larch forests,P concentration and N:P ratio of leaves were significantly related to those of soil.Except for larch forest type,N-P stoichiometry was also regulated by elevation,climatic factors,and community structure.With increasing age(from 25 to 236 years),soil N and N:P ratio significantly increased,especially in the topsoil.With increasing mean DBH,leaf N concentration and N:P ratio also increased,indicating a shift in nutrient limitations with stand growth.These findings provide evidence that plant community structure and environmental factors regulate soil and leaf N-P stoichiometry,which is critically important for understanding biogeochemical cycles and forest management undergoing natural succession.展开更多
Soil organic carbon(SOC):total nitrogen(TN):total phosphorus(TP)(C:N:P)stoichiometry can give important information about biogeochemical cycling in terrestrial ecosystems.The spatial patterns and driving mechanisms of...Soil organic carbon(SOC):total nitrogen(TN):total phosphorus(TP)(C:N:P)stoichiometry can give important information about biogeochemical cycling in terrestrial ecosystems.The spatial patterns and driving mechanisms of soil C:N:P ratios are still poorly understood on the Qinghai-Tibetan Plateau of China.In this study,we therefore combined data of the geography,climate,soil properties,and vegetation characteristics from 319 sites across the plateau to investigate their relationships with the horizontal and vertical patterns of SOC,TN,and TP concentrations and their stoichiometric ratios(C:N and N:P).We observed higher SOC(30.5–46.8 mg g^(-1)),TN(2.4–3.4 mg g^(-1)),C:N(14.7–18.0),and N:P(6.9–8.0)in alpine meadows,forests,and shrublands and higher TP(1.6 mg g^(-1))in croplands.Overall,SOC,TN,TP,C:N,and N:P showed decreasing trends(by 67%,64%,19%,12%,and 54%,respectively)along the whole soil profile(0–100 cm).Soil cation exchange capacity and bulk density were the stronger environmental drivers of SOC and TN.Soil TP showed latitudinal and longitudinal increasing trends in all soil layers.Soil properties explained most of the variations in SOC(67%–90%),TN(67%–87%),C:N(61%–89%),and N:P(64%–85%),with increasing impacts along the soil profile.Geography and climate influenced soil TP directly and indirectly through their impacts on soil properties,with geography being the predominant driver(46%–65%)along the soil profile.The variation in soil C:N was mostly driven by SOC and TN,and the direct and indirect effects of the environmental factors were relatively weak.Geography,climate,soil properties,and vegetation characteristics indirectly impacted soil N:P through their impacts on TN and TP in all the soil layers.Altogether,our findings illuminate the relative contributions of geography,climate,soil properties,and vegetation characteristics to soil C:N and N:P,thus enhancing our understanding of C,N,and P cycling across the Qinghai-Tibetan Plateau.展开更多
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammoni...[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammonium nitrogen and phosphorus concentrations.Potassium persulfate absorptiometry was used for the measurement of total N content,while the flame photometer was used to detect the potassium and sodium concentration in plants.All the nutrient determination of plant samples were repeated for four times.[Result]The four nutrient concentrations in almost all samples were in the normal range of natural plant nutrition concentrations;in early-spring herbs functional groups,different species showed diversity on the nutrient concentrations;plant height had no significant effect on the nutrient concentrations in plants;the nutrient concentrations of non-grass group plants were higher than that of grass group plants;the nutrient concentrations of the annual herb were higher than that of perennial herbs.[Conclusion]The study had provided basis for the understanding of the effects of changes in nutritional conditions on species diversity,community structure and succession of the system.展开更多
Nitrogen (N) and phosphorus (P) are the major nutrients that constrain plant growth and development, as well as the structure and function of ecosystems. Hence, leaf N and P patterns can contribute to a deep under...Nitrogen (N) and phosphorus (P) are the major nutrients that constrain plant growth and development, as well as the structure and function of ecosystems. Hence, leaf N and P patterns can contribute to a deep understanding of plant nutrient status, nutrient limitation type of ecosystems, plant life-history strategy and differentiation of functional groups. However, the status and pattern of leaf N and P stoichiometry in N-deficiency desert ecosystems remain unclear. Under this context, the leaf samples from 57 plant species in the Karamori Mountain Ungulate Nature Reserve, eastern Junggar Desert, China were investigated and the patterns and interrelations of leaf N and P were comparatively analyzed. The results showed that the average leaf N concentration, P concentration, and N:P ratio were 30.81 mg/g, 1.77 mg/g and 17.72, respectively. This study found that the leaf N concentration and N:P ratio were significantly higher than those of studies conducted at global, national and regional scales; however, the leaf P concentration was at moderate level. Leaf N concentration was allometrically correlated with leaf P and N:P ratio across all species. Leaf N, P concentrations and N:P ratio differed to a certain extent among plant functional groups. C4 plants and shrubs, particularly shrubs with assimilative branches, showed an obviously lower P concentration than those of C3 plants, herbs and shrubs without assimilative branches. Shrubs with assimilative branches also had lower N concentration. Fabaceae plants had the highest leaf N, P concentrations (as well as Asteraceae) and N:P ratio; other families had a similar N, P-stoichiometry. The soil in this study was characterized by a lack of N (total N:P ratio was 0.605), but had high N availability compared with P (i.e. the available N:P ratio was 1.86). This might explain why plant leaves had high N concentration (leaf N:P ratio〉16). In conclusion, the desert plants in the extreme environment in this study have formed their intrinsic and special stoichiometric characteristics in relation to their life-history strategy.展开更多
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing...Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.展开更多
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr...Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.展开更多
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were stud...To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.展开更多
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with su...Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage.展开更多
Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribut...Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribution with ecological stoichiometry may be useful in explaining their mechanisms of living in different microhabitats. In this study, Syntrichia caninervis, the dominant moss species of moss crusts in the Gurbantunggut Desert, China, was selected to examine the study of stoichiometric characteristics in three microhabitats(under living shrubs, under dead shrubs and in exposed ground). The stoichiometry and enzyme activity of rhizosphere soil were analyzed. The plant function in the above-ground and below-ground parts of S. caninervis is significantly different, so the stoichiometry of the above-ground and below-ground parts might also be different. Results showed that carbon(C), nitrogen(N) and phosphorus(P) contents in the below-ground parts of S. caninervis were significantly lower than those in the above-ground parts. The highest N and P contents of the two parts were found under living shrubs and the lowest under dead shrubs. The C contents of the two parts did not differ significantly among the three microhabitats. In contrast, the ratios of C:N and C:P in the below-ground parts were higher than those in the above-ground parts in all microhabitats, with significant differences in the microhabitats of exposed ground and under living shrubs. There was an increasing trend in soil organic carbon(SOC), soil total nitrogen(STN), soil available phosphorous(SAP), and C:P and N:P ratios from exposed ground to under living shrubs and to under dead shrubs. No significant differences were found in soil total phosphorous(STP) and soil available nitrogen(SAN), or in ratios of C:N and SAN:SAP. Higher soil urease(SUE) and soil nitrate reductase(SNR) activities were found in soil under dead shrubs, while higher soil sucrase(STC) and soil β-glucosidase(SBG) activities were respectively found in exposed ground and under living shrubs. Soil alkaline phosphatase(AKP) activity reached its lowest value under dead shrubs, and there was no significant difference between the microhabitats of exposed ground and under living shrubs. Results indicated that the photosynthesis-related C of S. caninervis remained stable under the three microhabitats while N and P were mediated by the microhabitats. The growth strategy of S. caninervis varied in different microhabitats because of the different energy cycles and nutrient balances. The changes of stoichiometry in soil were not mirrored in the moss. We conclude that microhabitat could change the growth strategy of moss and nutrients cycling of moss patches.展开更多
Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the ce...Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under dif ferent turbulent mixing conditions. A phanizomenon flos-aquae were cultivated in dif ferent stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s 3 to 0.050 58 m 2/s 3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory ef fect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum ef fective quantum yield of PSII(the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the dif fusive sublayer, regulating the nutrient flux of cells.展开更多
Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In ...Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In this study,carbon(C),nitrogen(N),and phosphorus(P)concentrations were evaluated in plant tissues(trees,shrubs,and herbs),litter,and soil of young(≤40-year-old),middle-aged(41–60-year-old),near-mature(61–80-year-old),and mature(81–120-year-old)Quercus secondary forests on the Loess Plateau,China.Vegetation composition,plant biomass,and C stock were determined to illustrate their interaction with stoichiometry.Only tree biomass C signifi cantly increased with stand development.Leaf N and trunk P concentrationsgenerally increased,but branch P decreased with growth stage.Fine roots had the highest C and P concentrations at the middle-aged stage.In contrast,shrubs,herbs,litter,and soil C:N:P stoichiometry did not change signifi cantly during stand development.Leaf N and P were positively correlated with soil C,N,P,and their ratios.However,there was no signifi cant correlation between litter and leaves in terms of C:N:P stoichiometry.A redundancy analysis showed that soil N best explained leaf N and P variance,and tree biomass and C stock were related to biotic factors such as tree age and shrub biomass.Hierarchical partitioning analysis indicated that,compared with soil or litter variables,stand age only accounted for a relatively small proportion of leaf C,N,and P variation.Thus,secondary Quercus ecosystems might have inherent ability to maintain sensitive responses of metabolically active organs to environmental factors during stand aging.The results of this work help to elucidate the biogeochemical cycling of secondary forest ecosystems in tree development,provide novel insights into the adaptation strategies of plants in diff erent organs and growth stages,and could be used to guide fertilization programs and optimize forest structure.展开更多
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of f...Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of fertilization and residue return with respect to ecological stoichiometry,we collected soil samples from a 30-year field experiment on residue return(maize straw)at rates of 0,2.5,and 5.0 Mg ha^-1 in combination with 8 fertilization treatments:no fertilizer(F0),N fertilizer,P fertilizer,potassium(K)fertilizer,N and P(NP)fertilizers,N and K(NK)fertilizers,P and K(PK)fertilizers,and N,P,and K(NPK)fertilizers.We measured soil organic C(SOC),total N and P,microbial biomass C,N,and P,water-soluble organic C and N,KMnO4-oxidizabIe C(KMnO4-C),and carbon management index(CMI).Compared with the control(F0 treatment without residue return),fertilization and residue return significantly increased the KMn〇4-C content and CMI.Furthermore,compared with the control,residue return significantly increased the SOC content.Moreover,the NPK treatment with residue return at 5.0 Mg ha^-1 significantly enhanced the C:N,C:P,and N:P ratios in the soil,whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass.Therefore,NPK fertilizer application combined with residue return at 5.0 Mg ha^-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms.Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.展开更多
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the ma...Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the management of the sandy grassland ecosystem.We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev.responses of both aboveground and belowground biomasses and carbon(C),N and phosphorus(P)concentrations in the plant tissues and soil.With increasing N addition,both aboveground and belowground biomasses and C,N and P concentrations in the plant tissues increased and exhibited a single-peak curve.C:N and C:P ratios of the plant tissues first decreased but then increased,while the trend for N:P ratio was opposite.The peak values of aboveground biomass,belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2•a),while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2•a).The maximum growth percentages of aboveground and belowground biomasses were 324.2%and 75.9%,respectively,and the root to shoot ratio(RSR)decreased with the addition of N.N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems,while C concentration was ranked as roots>leaves>stems.The increase in N concentration in the plant tissues was the largest(from 34%to 162%),followed by the increase in P(from 10%to 33%)and C(from 8%to 24%)concentrations.The aboveground biomass was positively and linearly correlated with leaf C,N and P,and soil C and N concentrations,while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations.These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass,while the accumulation of leaf N resulted in the increase in the belowground biomass.N deposition can alter the allocation of C,N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass,which is conducive to the restoration of sandy grassland.展开更多
Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slo...Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slow progress,and has important implications for the understanding of plant adaption strategy under future environmental changes.Herein,this research was aimed to explore the influences of SR on plant nutrient characteristics,and provided theoretical basis for introducing SR into the establishment of biochemical models of forest ecosystems in the future researches.Methods:We measured leaf nitrogen(N)and phosphorus(P)stoichiometry in 19 Chinese fir plantations across subtropical China by a field investigation.The direct and indirect effects of SR,including global radiation(Global R),direct radiation(Direct R)and diffuse radiation(Diffuse R)on the leaf N and P stoichiometry were investigated.Results:The linear regression analysis showed that leaf N concentration had no association with SR,while leaf P concentration and N:P ratio were negatively and positively related to SR,respectively.Partial least squares path model(PLS-PM)demonstrated that SR(e.g.Direct R and Diffuse R),as a latent variable,exhibited direct correlations with leaf N and P stoichiometry as well as the indirect correlation mediated by soil P content.The direct associations(path coefficient=−0.518)were markedly greater than indirect associations(path coefficient=−0.087).The covariance-based structural equation modeling(CB-SEM)indicated that SR had direct effects on leaf P concentration(path coefficient=−0.481),and weak effects on leaf N concentration.The high SR level elevated two temperature indexes(mean annual temperature,MAT;≥10°C annual accumulated temperature,≥10℃ AAT)and one hydrological index(mean annual evapotranspiration,MAE),but lowered the soil P content.MAT,MAE and soil P content could affect the leaf P concentration,which cause the indirect effect of SR on leaf P concentration(path coefficient=0.004).Soil N content had positive effect on the leaf N concentration,which was positively and negatively regulated by MAP and≥10℃ AAT,respectively.Conclusions:These results confirmed that SR had negatively direct and indirect impacts on plant nutrient status of Chinese fir based on a regional investigation,and the direct associations were greater than the indirect associations.Such findings shed light on the guideline of taking SR into account for the establishment of global biogeochemical models of forest ecosystems in the future studies.展开更多
Tremendous efforts have been dedicated to promote the formation ability of high-entropy transition metal carbides.However,the majority of methods for the synthesis of high-entropy transition metal carbides still face ...Tremendous efforts have been dedicated to promote the formation ability of high-entropy transition metal carbides.However,the majority of methods for the synthesis of high-entropy transition metal carbides still face the challenges of high temperature,low efficiency,additional longtime post-treatment and uncontrollable properties.To cope with these challenges,high-entropy transition metal carbides with regulatable carbon stoichiometry(HE TMC)were designed and synthesized,achieving improved ability for single phase solid solutions formation,promoting of sintering and controllable mechanical properties.Two typical composition series,i.e.,easily synthesized(ZrHfTaNb)C(ZHTNC)and difficultly synthesized(Zr_(0.25)Hf_(0.25)Ta_(0.25)Ti_(0.25))C(ZHTTC)are selected to demonstrate the promoting formation ability of single phase solid solutions from carbon stoichiometry deviations.Single phase high-entropy ZHTTC,which has been proven difficult in forming a single phase solid solution,can be prepared with the decrease of C/TM ratio under 2000℃;while the high-entropy ZHTNC,which has been proven easy in forming a single phase solid solution,can be synthesized at lower temperatures with the decrease of C/TM ratio.The synergistic effect of entropy stabilization and reduced chemical bond strength gaining from carbon stoichiometry deviations is responsible for the formation of single phase solid solutions and the promoted sintering of HE TMC.For example,the relative density of bulk(ZrHfTaNb)C(SPS-ZHTNC)increases from 90.98%to 94.25%with decreasing the C/TM atomic ratio from 0.9 to 0.74.More importantly,the room temperature flexural strength,fracture toughness and brittleness index of SPS-ZHTNCcan be tuned in the range of 384 MPa–419 MPa,4.41 MPam–4.73 MPamand 3.679μm–4.083μm,respectively.Thus,the HE TMCprepared by adjusting the ratio of carbon to refractory transition metal oxides have great potential for achieving low temperature synthesis,promoted sintering and tunable properties.展开更多
The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the under...The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the underlying regulatory mechanisms are pillars of ecology but remain underexplored.In this study of plant C-N-P stoichiometry and nutrient resorption in Castanopsis hystrix groves in three cities(Guangzhou,Zhongshan,and Lechang)that represent an urban-rural gradient in Guangdong Province,South China,we explored potential relationships among NO_(2) concentrations,diameter at breast height(DBH),and resident human population.Mean annual temperature,mean annual precipitation,insolation duration per year,and the human resident population differed significantly among the three cities.Soil C-N-P was always highest in suburban Lechang,and the concentration of NO_(2) was highest in urban Guanghzou(55.33±0.67μg m^(-3))and positively correlated with the resident population and leaf N:P.Our findings suggest that C-N-P stoichiometry of C.hystrix was better explained by NO_(2)than by soil C-N-P stoichiometry and that nutrient resorption was better explained by leaf nutrients and DBH than by NO_(2) and soil stoichiometry.Our study supports the hypothesis that rapid urbanization influences NO_(2) concentrations and microclimate,which may jointly change the stoichiometry of plant nutrients in the forest ecosystems.展开更多
基金supported by the National Natural Science Foundation of China(W2412123)the Youth Top Talents Project of"Tianshan Talent"Training Plan of Xinjiang Uygur Autonomous Region,China(2022TSYCCX0011)+1 种基金the Tianshan Talents Project of Xinjiang Uygur Autonomous Region,China(2022TSYCLJ0056)the Self-deployment Program of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E350030401).
文摘Grassland shrub encroachment is a phenomenon that is prevalent in arid and semi-arid regions worldwide,impacting grassland ecosystems in several ways.In the context of escalating climate change and human activities,examining the nutrient and stoichiometric characteristics of Spiraea shrubs in grassland ecosystems,along with their relationships with environmental factors,can yield valuable insights into the nutrient utilization and survival strategies of these shrubs.This,in turn,offers a scientific foundation for developing future conservation measures.This study was conducted in July 2023 in the Altay Mountains,Northwest China,where Spiraea shrubs thrive across five grassland types:temperate steppe desert,temperate desert steppe,temperate steppe,temperate meadow steppe,and mountain meadow.Leaf and soil samples were collected from each grassland type to analyze the concentrations of carbon(C),nitrogen(N),and phosphorus(P),as well as the stoichiometric characteristics of both the leaves and soil.Subsequently,correlation analysis and redundancy analysis(RDA)were conducted to investigate the variations in leaf C,N,and P concentrations and leaf stoichiometry of Spiraea shrubs as well as their influencing factors.The results indicated the presence of significant or highly significant differences(P<0.050)in the leaf C,N,and P concentrations and leaf stoichiometry(C:N,C:P,and N:P ratios)of Spiraea shrubs across the five grassland types.The N:P ratios of Spiraea shrub leaves in the five grassland types ranged from 7.37 to 11.77,suggesting that N availability generally limits the growth of Spiraea shrubs.Results of RDA revealed that the most significant contributors to the C,N,and P concentrations and stoichiometric characteristics of Spiraea shrub leaves were in the following order:soil total N>mean annual precipitation>elevation>soil pH>soil organic C>mean annual temperature.These factors had contribution rates of 35.32%,13.19%,10.20%,8.82%,8.34%,and 6.48%,respectively.It was determined that soil nutrients have a greater impact on the growth and nutrient accumulation of Spiraea shrubs compared to climatic factors.This study makes an important contribution to the theoretical basis and data support,enabling a deeper understanding of the response mechanisms of shrub species in the grassland ecosystems of the Altay Mountains to climate change.
基金supported by the National Natural Science Foundation of China(No.32201426,No.31988102)the Major Program for Basic Research Project of Yunnan Province(No.202101BC070002)the Key Research and Development Program of Yunnan Provin ce(No.202303AC100009).
文摘Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant community structure,especially in forests,has not been fully elucidated.We investigated 68 plots in larch forests in northern China to explore how plant community structure and environmental factors affect the N-P stoichiometry of soil and leaves.The results showed significant differences in soil and leaf N-P stoichiometry among the three larch forests,P concentration and N:P ratio of leaves were significantly related to those of soil.Except for larch forest type,N-P stoichiometry was also regulated by elevation,climatic factors,and community structure.With increasing age(from 25 to 236 years),soil N and N:P ratio significantly increased,especially in the topsoil.With increasing mean DBH,leaf N concentration and N:P ratio also increased,indicating a shift in nutrient limitations with stand growth.These findings provide evidence that plant community structure and environmental factors regulate soil and leaf N-P stoichiometry,which is critically important for understanding biogeochemical cycles and forest management undergoing natural succession.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program of China(No.2019QZKK0306-02)the National Natural Science Foundation of China(Nos.42322102 and 42271058)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021310)the Science&Technology Fundamental Resources Investigation Program of China(No.2022FY100202)
文摘Soil organic carbon(SOC):total nitrogen(TN):total phosphorus(TP)(C:N:P)stoichiometry can give important information about biogeochemical cycling in terrestrial ecosystems.The spatial patterns and driving mechanisms of soil C:N:P ratios are still poorly understood on the Qinghai-Tibetan Plateau of China.In this study,we therefore combined data of the geography,climate,soil properties,and vegetation characteristics from 319 sites across the plateau to investigate their relationships with the horizontal and vertical patterns of SOC,TN,and TP concentrations and their stoichiometric ratios(C:N and N:P).We observed higher SOC(30.5–46.8 mg g^(-1)),TN(2.4–3.4 mg g^(-1)),C:N(14.7–18.0),and N:P(6.9–8.0)in alpine meadows,forests,and shrublands and higher TP(1.6 mg g^(-1))in croplands.Overall,SOC,TN,TP,C:N,and N:P showed decreasing trends(by 67%,64%,19%,12%,and 54%,respectively)along the whole soil profile(0–100 cm).Soil cation exchange capacity and bulk density were the stronger environmental drivers of SOC and TN.Soil TP showed latitudinal and longitudinal increasing trends in all soil layers.Soil properties explained most of the variations in SOC(67%–90%),TN(67%–87%),C:N(61%–89%),and N:P(64%–85%),with increasing impacts along the soil profile.Geography and climate influenced soil TP directly and indirectly through their impacts on soil properties,with geography being the predominant driver(46%–65%)along the soil profile.The variation in soil C:N was mostly driven by SOC and TN,and the direct and indirect effects of the environmental factors were relatively weak.Geography,climate,soil properties,and vegetation characteristics indirectly impacted soil N:P through their impacts on TN and TP in all the soil layers.Altogether,our findings illuminate the relative contributions of geography,climate,soil properties,and vegetation characteristics to soil C:N and N:P,thus enhancing our understanding of C,N,and P cycling across the Qinghai-Tibetan Plateau.
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
基金Supported by National Natural Science Foundation of China(30370146)~~
文摘[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammonium nitrogen and phosphorus concentrations.Potassium persulfate absorptiometry was used for the measurement of total N content,while the flame photometer was used to detect the potassium and sodium concentration in plants.All the nutrient determination of plant samples were repeated for four times.[Result]The four nutrient concentrations in almost all samples were in the normal range of natural plant nutrition concentrations;in early-spring herbs functional groups,different species showed diversity on the nutrient concentrations;plant height had no significant effect on the nutrient concentrations in plants;the nutrient concentrations of non-grass group plants were higher than that of grass group plants;the nutrient concentrations of the annual herb were higher than that of perennial herbs.[Conclusion]The study had provided basis for the understanding of the effects of changes in nutritional conditions on species diversity,community structure and succession of the system.
基金financially supported by the National Natural Science Foundation of China(41201056)the National Basic Research Program of China(2014CB954202)+2 种基金the West Light Foundation of the Chinese Academy of Sciences(XBBS-2014-20)the Program of Joint Foundation of the National Natural Science Foundationthe Government of Xinjiang Uygur Autonomous Region of China(U1503101)
文摘Nitrogen (N) and phosphorus (P) are the major nutrients that constrain plant growth and development, as well as the structure and function of ecosystems. Hence, leaf N and P patterns can contribute to a deep understanding of plant nutrient status, nutrient limitation type of ecosystems, plant life-history strategy and differentiation of functional groups. However, the status and pattern of leaf N and P stoichiometry in N-deficiency desert ecosystems remain unclear. Under this context, the leaf samples from 57 plant species in the Karamori Mountain Ungulate Nature Reserve, eastern Junggar Desert, China were investigated and the patterns and interrelations of leaf N and P were comparatively analyzed. The results showed that the average leaf N concentration, P concentration, and N:P ratio were 30.81 mg/g, 1.77 mg/g and 17.72, respectively. This study found that the leaf N concentration and N:P ratio were significantly higher than those of studies conducted at global, national and regional scales; however, the leaf P concentration was at moderate level. Leaf N concentration was allometrically correlated with leaf P and N:P ratio across all species. Leaf N, P concentrations and N:P ratio differed to a certain extent among plant functional groups. C4 plants and shrubs, particularly shrubs with assimilative branches, showed an obviously lower P concentration than those of C3 plants, herbs and shrubs without assimilative branches. Shrubs with assimilative branches also had lower N concentration. Fabaceae plants had the highest leaf N, P concentrations (as well as Asteraceae) and N:P ratio; other families had a similar N, P-stoichiometry. The soil in this study was characterized by a lack of N (total N:P ratio was 0.605), but had high N availability compared with P (i.e. the available N:P ratio was 1.86). This might explain why plant leaves had high N concentration (leaf N:P ratio〉16). In conclusion, the desert plants in the extreme environment in this study have formed their intrinsic and special stoichiometric characteristics in relation to their life-history strategy.
基金supported by the State Key Research Development Program of China (Grant 2016YFC0502002)Youth Innovation Research Team Project (LENOM2016Q0003)
文摘Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.
基金supported by the ‘‘Doctoral Scientific Research Foundation’’ of Heilongjiang Bayi Agricultural University,Grant No.XDB2015-02 and the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences,Grant No.XDA05050203-04-01
文摘Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued.
基金supported by the National Natural Science Foundation of China(Nos.21303157 and 21106123)the Natural Science Foundation of Hebei Province,China(No.B2012203104)+1 种基金the China Postdoctoral Science Foundation Project(2013M541201)the Research Fund for the Doctoral Program of Higher Education of China(20131333120008)
文摘To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.
基金financially supported by the External Cooperation Program of Chinese Academy of Sciences(Grant No.161461KYSB20170013)Special-Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(Grant No.A314021403-C2).
文摘Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage.
基金supported by the National Natural Science Foundation of China (41571256, 41471251, 31670007)the Youth Innovation Promotion Association CAS (2015356)
文摘Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribution with ecological stoichiometry may be useful in explaining their mechanisms of living in different microhabitats. In this study, Syntrichia caninervis, the dominant moss species of moss crusts in the Gurbantunggut Desert, China, was selected to examine the study of stoichiometric characteristics in three microhabitats(under living shrubs, under dead shrubs and in exposed ground). The stoichiometry and enzyme activity of rhizosphere soil were analyzed. The plant function in the above-ground and below-ground parts of S. caninervis is significantly different, so the stoichiometry of the above-ground and below-ground parts might also be different. Results showed that carbon(C), nitrogen(N) and phosphorus(P) contents in the below-ground parts of S. caninervis were significantly lower than those in the above-ground parts. The highest N and P contents of the two parts were found under living shrubs and the lowest under dead shrubs. The C contents of the two parts did not differ significantly among the three microhabitats. In contrast, the ratios of C:N and C:P in the below-ground parts were higher than those in the above-ground parts in all microhabitats, with significant differences in the microhabitats of exposed ground and under living shrubs. There was an increasing trend in soil organic carbon(SOC), soil total nitrogen(STN), soil available phosphorous(SAP), and C:P and N:P ratios from exposed ground to under living shrubs and to under dead shrubs. No significant differences were found in soil total phosphorous(STP) and soil available nitrogen(SAN), or in ratios of C:N and SAN:SAP. Higher soil urease(SUE) and soil nitrate reductase(SNR) activities were found in soil under dead shrubs, while higher soil sucrase(STC) and soil β-glucosidase(SBG) activities were respectively found in exposed ground and under living shrubs. Soil alkaline phosphatase(AKP) activity reached its lowest value under dead shrubs, and there was no significant difference between the microhabitats of exposed ground and under living shrubs. Results indicated that the photosynthesis-related C of S. caninervis remained stable under the three microhabitats while N and P were mediated by the microhabitats. The growth strategy of S. caninervis varied in different microhabitats because of the different energy cycles and nutrient balances. The changes of stoichiometry in soil were not mirrored in the moss. We conclude that microhabitat could change the growth strategy of moss and nutrients cycling of moss patches.
基金Supported by the National Natural Science Foundation of China(Nos.51309220,51679226)the National Key SandT Project on Water Pollution Control and Treatment(Nos.2014ZX07104-006,2015ZX07103-007)the Western Action Program funded by the Chinese Academy of Sciences(No.KZCX2-XB3-14)
文摘Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under dif ferent turbulent mixing conditions. A phanizomenon flos-aquae were cultivated in dif ferent stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s 3 to 0.050 58 m 2/s 3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory ef fect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum ef fective quantum yield of PSII(the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the dif fusive sublayer, regulating the nutrient flux of cells.
基金supported by the National Nature Science Foundation of China(No.41977418 and 42130717)National Key R&D Program of China(2016YFC0501703 and 2017YFC0504605)CAS“Light of West China”Program(XAB201702).
文摘Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In this study,carbon(C),nitrogen(N),and phosphorus(P)concentrations were evaluated in plant tissues(trees,shrubs,and herbs),litter,and soil of young(≤40-year-old),middle-aged(41–60-year-old),near-mature(61–80-year-old),and mature(81–120-year-old)Quercus secondary forests on the Loess Plateau,China.Vegetation composition,plant biomass,and C stock were determined to illustrate their interaction with stoichiometry.Only tree biomass C signifi cantly increased with stand development.Leaf N and trunk P concentrationsgenerally increased,but branch P decreased with growth stage.Fine roots had the highest C and P concentrations at the middle-aged stage.In contrast,shrubs,herbs,litter,and soil C:N:P stoichiometry did not change signifi cantly during stand development.Leaf N and P were positively correlated with soil C,N,P,and their ratios.However,there was no signifi cant correlation between litter and leaves in terms of C:N:P stoichiometry.A redundancy analysis showed that soil N best explained leaf N and P variance,and tree biomass and C stock were related to biotic factors such as tree age and shrub biomass.Hierarchical partitioning analysis indicated that,compared with soil or litter variables,stand age only accounted for a relatively small proportion of leaf C,N,and P variation.Thus,secondary Quercus ecosystems might have inherent ability to maintain sensitive responses of metabolically active organs to environmental factors during stand aging.The results of this work help to elucidate the biogeochemical cycling of secondary forest ecosystems in tree development,provide novel insights into the adaptation strategies of plants in diff erent organs and growth stages,and could be used to guide fertilization programs and optimize forest structure.
基金This research was financially supported by the Special Foundation for State Major Basic Research Program of China(No.2016YFC0501202)the Special Foundation for Basic Research Program in Soil of Chinese Academy Sciences(Nos.XDB 15030103 and XDA23070501)+2 种基金the National Natural Science Foundation of China(Nos.41920104008 and 41701332)the Key Laboratory Foundation of Mollisols Agroecology(No.2016ZKHT-05)the 135 Project of Northeast Institute of Geography and Agroecology of Chinese Academy Sciences(No.Y6H2043001).
文摘Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon(C),nitrogen(N),and phosphorus(P)metabolisms in response to agricultural nutrient management.To determine the roles of fertilization and residue return with respect to ecological stoichiometry,we collected soil samples from a 30-year field experiment on residue return(maize straw)at rates of 0,2.5,and 5.0 Mg ha^-1 in combination with 8 fertilization treatments:no fertilizer(F0),N fertilizer,P fertilizer,potassium(K)fertilizer,N and P(NP)fertilizers,N and K(NK)fertilizers,P and K(PK)fertilizers,and N,P,and K(NPK)fertilizers.We measured soil organic C(SOC),total N and P,microbial biomass C,N,and P,water-soluble organic C and N,KMnO4-oxidizabIe C(KMnO4-C),and carbon management index(CMI).Compared with the control(F0 treatment without residue return),fertilization and residue return significantly increased the KMn〇4-C content and CMI.Furthermore,compared with the control,residue return significantly increased the SOC content.Moreover,the NPK treatment with residue return at 5.0 Mg ha^-1 significantly enhanced the C:N,C:P,and N:P ratios in the soil,whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass.Therefore,NPK fertilizer application combined with residue return at 5.0 Mg ha^-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms.Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
基金the National Natural Science Foundation of China(31560657)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2018MS03079)。
文摘Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the management of the sandy grassland ecosystem.We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev.responses of both aboveground and belowground biomasses and carbon(C),N and phosphorus(P)concentrations in the plant tissues and soil.With increasing N addition,both aboveground and belowground biomasses and C,N and P concentrations in the plant tissues increased and exhibited a single-peak curve.C:N and C:P ratios of the plant tissues first decreased but then increased,while the trend for N:P ratio was opposite.The peak values of aboveground biomass,belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2•a),while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2•a).The maximum growth percentages of aboveground and belowground biomasses were 324.2%and 75.9%,respectively,and the root to shoot ratio(RSR)decreased with the addition of N.N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems,while C concentration was ranked as roots>leaves>stems.The increase in N concentration in the plant tissues was the largest(from 34%to 162%),followed by the increase in P(from 10%to 33%)and C(from 8%to 24%)concentrations.The aboveground biomass was positively and linearly correlated with leaf C,N and P,and soil C and N concentrations,while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations.These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass,while the accumulation of leaf N resulted in the increase in the belowground biomass.N deposition can alter the allocation of C,N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass,which is conducive to the restoration of sandy grassland.
基金funded by the National Key Research and Development Program of China(No.2016YFD0600202-4)the Fundamental Research Funds for the Central Non-profit Research Institution of Chinese fir Academy of Forestry(Nos.CAFYBB2017ZX002-2 and CAFYBB2020ZE001).
文摘Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slow progress,and has important implications for the understanding of plant adaption strategy under future environmental changes.Herein,this research was aimed to explore the influences of SR on plant nutrient characteristics,and provided theoretical basis for introducing SR into the establishment of biochemical models of forest ecosystems in the future researches.Methods:We measured leaf nitrogen(N)and phosphorus(P)stoichiometry in 19 Chinese fir plantations across subtropical China by a field investigation.The direct and indirect effects of SR,including global radiation(Global R),direct radiation(Direct R)and diffuse radiation(Diffuse R)on the leaf N and P stoichiometry were investigated.Results:The linear regression analysis showed that leaf N concentration had no association with SR,while leaf P concentration and N:P ratio were negatively and positively related to SR,respectively.Partial least squares path model(PLS-PM)demonstrated that SR(e.g.Direct R and Diffuse R),as a latent variable,exhibited direct correlations with leaf N and P stoichiometry as well as the indirect correlation mediated by soil P content.The direct associations(path coefficient=−0.518)were markedly greater than indirect associations(path coefficient=−0.087).The covariance-based structural equation modeling(CB-SEM)indicated that SR had direct effects on leaf P concentration(path coefficient=−0.481),and weak effects on leaf N concentration.The high SR level elevated two temperature indexes(mean annual temperature,MAT;≥10°C annual accumulated temperature,≥10℃ AAT)and one hydrological index(mean annual evapotranspiration,MAE),but lowered the soil P content.MAT,MAE and soil P content could affect the leaf P concentration,which cause the indirect effect of SR on leaf P concentration(path coefficient=0.004).Soil N content had positive effect on the leaf N concentration,which was positively and negatively regulated by MAP and≥10℃ AAT,respectively.Conclusions:These results confirmed that SR had negatively direct and indirect impacts on plant nutrient status of Chinese fir based on a regional investigation,and the direct associations were greater than the indirect associations.Such findings shed light on the guideline of taking SR into account for the establishment of global biogeochemical models of forest ecosystems in the future studies.
基金the National Natural Science Foundation of China(Nos.51972082,51972089,51902067 and 52172041)the China Postdoctoral Science Foundation(No.2019M651282)+1 种基金the Key Program of National Natural Science Foundation of China(No.52032003)the Heilongjiang Provincial Postdoctoral Science Foundation(No.LBH-Z19022)。
文摘Tremendous efforts have been dedicated to promote the formation ability of high-entropy transition metal carbides.However,the majority of methods for the synthesis of high-entropy transition metal carbides still face the challenges of high temperature,low efficiency,additional longtime post-treatment and uncontrollable properties.To cope with these challenges,high-entropy transition metal carbides with regulatable carbon stoichiometry(HE TMC)were designed and synthesized,achieving improved ability for single phase solid solutions formation,promoting of sintering and controllable mechanical properties.Two typical composition series,i.e.,easily synthesized(ZrHfTaNb)C(ZHTNC)and difficultly synthesized(Zr_(0.25)Hf_(0.25)Ta_(0.25)Ti_(0.25))C(ZHTTC)are selected to demonstrate the promoting formation ability of single phase solid solutions from carbon stoichiometry deviations.Single phase high-entropy ZHTTC,which has been proven difficult in forming a single phase solid solution,can be prepared with the decrease of C/TM ratio under 2000℃;while the high-entropy ZHTNC,which has been proven easy in forming a single phase solid solution,can be synthesized at lower temperatures with the decrease of C/TM ratio.The synergistic effect of entropy stabilization and reduced chemical bond strength gaining from carbon stoichiometry deviations is responsible for the formation of single phase solid solutions and the promoted sintering of HE TMC.For example,the relative density of bulk(ZrHfTaNb)C(SPS-ZHTNC)increases from 90.98%to 94.25%with decreasing the C/TM atomic ratio from 0.9 to 0.74.More importantly,the room temperature flexural strength,fracture toughness and brittleness index of SPS-ZHTNCcan be tuned in the range of 384 MPa–419 MPa,4.41 MPam–4.73 MPamand 3.679μm–4.083μm,respectively.Thus,the HE TMCprepared by adjusting the ratio of carbon to refractory transition metal oxides have great potential for achieving low temperature synthesis,promoted sintering and tunable properties.
基金The work was supported by the National Key Research and Development Program of China(2017YFC0505606)National Natural Science Foundation of China(31570594,31600449)Forestry Science and Technology Innovation Project of Guangdong Province(2021-2023).
文摘The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the underlying regulatory mechanisms are pillars of ecology but remain underexplored.In this study of plant C-N-P stoichiometry and nutrient resorption in Castanopsis hystrix groves in three cities(Guangzhou,Zhongshan,and Lechang)that represent an urban-rural gradient in Guangdong Province,South China,we explored potential relationships among NO_(2) concentrations,diameter at breast height(DBH),and resident human population.Mean annual temperature,mean annual precipitation,insolation duration per year,and the human resident population differed significantly among the three cities.Soil C-N-P was always highest in suburban Lechang,and the concentration of NO_(2) was highest in urban Guanghzou(55.33±0.67μg m^(-3))and positively correlated with the resident population and leaf N:P.Our findings suggest that C-N-P stoichiometry of C.hystrix was better explained by NO_(2)than by soil C-N-P stoichiometry and that nutrient resorption was better explained by leaf nutrients and DBH than by NO_(2) and soil stoichiometry.Our study supports the hypothesis that rapid urbanization influences NO_(2) concentrations and microclimate,which may jointly change the stoichiometry of plant nutrients in the forest ecosystems.