The notion of bridge is introduced for systems of coupled forward-backward doubly stochastic differential equations (FBDSDEs). It is proved that if two FBDSDEs are linked by a bridge, then they have the same unique ...The notion of bridge is introduced for systems of coupled forward-backward doubly stochastic differential equations (FBDSDEs). It is proved that if two FBDSDEs are linked by a bridge, then they have the same unique solvability. Consequently, by constructing appropriate bridges, we obtain several classes of uniquely solvable FBDSDEs. Finally, the probabilistie interpretation for the solutions to a class of quasilinear stochastic partial differential equations (SPDEs) combined with algebra equations is given. One distinctive character of this result is that the forward component of the FBDSDEs is coupled with the backvzard variable.展开更多
Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling use...Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling used by F. -Y. Wang [Ann. Probab., 2012, 42(3): 994-1019]. Log-Harnack inequality is established for a class of stochastic evolution equations with non- Lipschitz coefficients which includes hyperdissipative Navier-Stokes/Burgers equations as examples. The integration by parts formula is extended to the path space of stochastic functional partial differential equations, then a Dirichlet form is defined and the log-Sobolev inequality is established.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 10771122, 11071145, 10921101 and 11231005)Natural Science Foundation of Shandong Province of China(Grant No. Y2006A08)+1 种基金National Basic Research Program of China (973 Program) (Grant No. 2007CB814900)Independent Innovation Foundation of Shandong University (Grant No. 2010JQ010)
文摘The notion of bridge is introduced for systems of coupled forward-backward doubly stochastic differential equations (FBDSDEs). It is proved that if two FBDSDEs are linked by a bridge, then they have the same unique solvability. Consequently, by constructing appropriate bridges, we obtain several classes of uniquely solvable FBDSDEs. Finally, the probabilistie interpretation for the solutions to a class of quasilinear stochastic partial differential equations (SPDEs) combined with algebra equations is given. One distinctive character of this result is that the forward component of the FBDSDEs is coupled with the backvzard variable.
文摘Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling used by F. -Y. Wang [Ann. Probab., 2012, 42(3): 994-1019]. Log-Harnack inequality is established for a class of stochastic evolution equations with non- Lipschitz coefficients which includes hyperdissipative Navier-Stokes/Burgers equations as examples. The integration by parts formula is extended to the path space of stochastic functional partial differential equations, then a Dirichlet form is defined and the log-Sobolev inequality is established.