Repetitive processes are a distinct class of 2D systems of both theoretic and practical interest.The robust H-infinity control problem for uncertain stochastic time-delay linear continuous repetitive processes is inve...Repetitive processes are a distinct class of 2D systems of both theoretic and practical interest.The robust H-infinity control problem for uncertain stochastic time-delay linear continuous repetitive processes is investigated in this paper.First,sufficient conditions are proposed in terms of stochastic Lyapunov stability theory,It o differential rule and linear matrix inequality technology.The corresponding controller design is then cast into a convex optimization problem.Attention is focused on constructing an admissible controller,which guarantees that the closed-loop repetitive processes are mean-square asymptotically stable and have a prespecified H-infinity performance γ with respect to all energy-bounded input signals.A numerical example illustrates the effectiveness of the proposed design scheme.展开更多
This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix i...This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.展开更多
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar...This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.展开更多
This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, s...This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the ...The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the resulting closed-loop system is internaly stable and L2 input-output stable in the sense of expectation. Furthermore, the explicit formulas of both kinds of controls are derived. An example is included to illustrate the correctness of theoretic results.展开更多
This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, th...This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.展开更多
This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-mono...This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter.展开更多
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions ...This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.展开更多
The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained ...The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.展开更多
This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A ge...This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker-Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time T on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoul...We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.展开更多
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.展开更多
A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positi...A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.展开更多
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur...Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.展开更多
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto...The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical...Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province(No.F200504)
文摘Repetitive processes are a distinct class of 2D systems of both theoretic and practical interest.The robust H-infinity control problem for uncertain stochastic time-delay linear continuous repetitive processes is investigated in this paper.First,sufficient conditions are proposed in terms of stochastic Lyapunov stability theory,It o differential rule and linear matrix inequality technology.The corresponding controller design is then cast into a convex optimization problem.Attention is focused on constructing an admissible controller,which guarantees that the closed-loop repetitive processes are mean-square asymptotically stable and have a prespecified H-infinity performance γ with respect to all energy-bounded input signals.A numerical example illustrates the effectiveness of the proposed design scheme.
基金This work was supported by the National Natural Science Foundation of China(No.60474013)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050424002)the Doctoral Foundation of Shandong Province (No. 2004BS01010)
文摘This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.
基金the National Natural Science Foundation of China (No.60074007).
文摘This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.
基金Sponsored by the Scientific and Technical Research Project Foundation of Education Department of Heilongjiang Province(Grant No. 10551013).
文摘This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
文摘The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the resulting closed-loop system is internaly stable and L2 input-output stable in the sense of expectation. Furthermore, the explicit formulas of both kinds of controls are derived. An example is included to illustrate the correctness of theoretic results.
基金supported by the Doctor Foundation of Southwest University of Science and Technology of China (Grant No. 08zx7108)
文摘This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.
文摘This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter.
基金This work was supported by the National Natural Science Foundation of China(No.60074007).
文摘This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
基金Project(61771085)supported by the National Natural Science Foundation of ChinaProject(KJQN 201900601)supported by the Research Project of Chongqing Educational Commission,China。
文摘The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10872165 and 10902085)
文摘This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker-Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time T on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61074159 and 61703286)
文摘We propose a new approach to discuss the consensus problem of multi-agent systems with time-varying delayed control inputs, switching topologies, and stochastic cyber-attacks under hybrid-triggered mechanism.A Bernoulli variable is used to describe the hybrid-triggered scheme, which is introduced to alleviate the burden of the network.The mathematical model of the closed-loop control system is established by taking the influences of time-varying delayed control inputs,switching topologies, and stochastic cyber-attacks into account under the hybrid-triggered scheme.A theorem as the main result is given to make the system consistent based on the theory of Lyapunov stability and linear matrix inequality.Markov jumps with uncertain rates of transitions are applied to describe the switch of topologies.Finally, a simulation example demonstrates the feasibility of the theory in this paper.
基金supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
文摘Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
基金Supported by NSFC(Nos.10671182,12061020)NSF of Guizhou Province(Nos.QKH[2019]1123,QKHKY[2021]088,QKHKY[2022]301,QKH-ZK[2021]331)the Ph.D.Project of Guizhou Education University(No.2021BS005)。
文摘A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.
文摘Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.
基金Supported by the National Natural Science Foundation of China(10671182)。
文摘The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.