期刊文献+
共找到1,788篇文章
< 1 2 90 >
每页显示 20 50 100
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
1
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Adaptive multi-stable stochastic resonance assisted by neural network and physical supervision
2
作者 Xucan Li Deming Nie +1 位作者 Ming Xu Kai Zhang 《Chinese Physics B》 2025年第5期210-219,共10页
Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supe... Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supervision(directly numerical simulation of the physical system).Different from traditional adaptive algorithm,the evaluation of the objective function(i.e.,fitness function)in iteration process of adaptive algorithm is through a trained neural network instead of the numerical simulation.It will bring a dramatically reduction in computation time.Considering predictive bias from the neural network,a secondary correction procedure is introduced to the reevaluate the top performers and then resort them in iteration process through physics supervision.Though it may increase the computing cost,the accuracy will be enhanced.Two examples are given to illustrate the proposed method.For a classical multi-stable stochastic resonance system,the results show that the proposed method not only amplifies weak signals effectively but also significantly reduces computing time.For the detection of weak signal from outer ring in bearings,by introducing a variable scale coefficient,the proposed method can also give a satisfactory result,and the characteristic frequency of the fault signal can be extracted correctly. 展开更多
关键词 stochastic resonance multi-stable physical supervision neural network fault diagnosis
原文传递
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
3
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
4
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Reliability of multi-dimensional network systems with nodes having stochastic connection ranges
5
作者 FU Yuqiang MA Xiaoyang ZHAO Fei 《Journal of Systems Engineering and Electronics》 2025年第4期1017-1023,共7页
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with... This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure. 展开更多
关键词 multi-dimensional network multi-valued decision diagram stochastic connection range reliability analysis impor-tance measure.
在线阅读 下载PDF
Real-Time Ship Roll Prediction via a Novel Stochastic Trainer-Based Feedforward Neural Network
6
作者 XU Dong-xing YIN Jian-chuan 《China Ocean Engineering》 2025年第4期608-620,共13页
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn... Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy. 展开更多
关键词 ship roll prediction data preprocessing strategy sliding data widow improved black widow optimization algorithm stochastic trainer feedforward neural network
在线阅读 下载PDF
Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone:A Stochastic Geometry Approach 被引量:1
7
作者 Yulei Wang Li Feng +3 位作者 Shumin Yao Hong Liang Haoxu Shi Yuqiang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期639-661,共23页
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices... Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate. 展开更多
关键词 Device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets) exclusion zone stochastic geometry(SG) Matérn hard-core process(MHCP)
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
8
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm stochastic cooperative information condition Sensor networks (L_(p))-exponential stability stochastic regression model
原文传递
Impact of different interaction behavior on epidemic spreading in time-dependent social networks
9
作者 黄帅 陈杰 +2 位作者 李梦玉 徐元昊 胡茂彬 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期190-195,共6页
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi... We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy. 展开更多
关键词 epidemic transmission complex network time-dependent networks social interaction
原文传递
Exploring reservoir computing:Implementation via double stochastic nanowire networks
10
作者 唐健峰 夏磊 +3 位作者 李广隶 付军 段书凯 王丽丹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期572-582,共11页
Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data ana... Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing. 展开更多
关键词 double-layer stochastic(DS)nanowire network architecture neuromorphic computation nanowire network reservoir computing time series prediction
原文传递
Modeling and Performance Analysis of UAV-Aided Millimeter Wave Cellular Networks with Stochastic Geometry
11
作者 Li Junruo Wang Yuanjie +2 位作者 Cui Qimei Hou Yanzhao Tao Xiaofeng 《China Communications》 SCIE CSCD 2024年第6期146-162,共17页
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power... UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs. 展开更多
关键词 average rate DOWNLINK millimeter wave point process theory SIR stochastic geometry UAVaided cellular networks
在线阅读 下载PDF
Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators
12
作者 WU Jingguo ZHU Jingwei +3 位作者 XIONG Xiankui YAO Haidong WANG Chengchen CHEN Yun 《ZTE Communications》 2024年第4期9-17,共9页
Deep neural networks(DNN)are widely used in image recognition,image classification,and other fields.However,as the model size increases,the DNN hardware accelerators face the challenge of higher area overhead and ener... Deep neural networks(DNN)are widely used in image recognition,image classification,and other fields.However,as the model size increases,the DNN hardware accelerators face the challenge of higher area overhead and energy consumption.In recent years,stochastic computing(SC)has been considered a way to realize deep neural networks and reduce hardware consumption.A probabilistic compensation algorithm is proposed to solve the accuracy problem of stochastic calculation,and a fully parallel neural network accelerator based on a deterministic method is designed.The software simulation results show that the accuracy of the probability compensation algorithm on the CIFAR-10 data set is 95.32%,which is 14.98%higher than that of the traditional SC algorithm.The accuracy of the deterministic algorithm on the CIFAR-10 dataset is 95.06%,which is 14.72%higher than that of the traditional SC algorithm.The results of Very Large Scale Integration Circuit(VLSI)hardware tests show that the normalized energy efficiency of the fully parallel neural network accelerator based on the deterministic method is improved by 31%compared with the circuit based on binary computing. 展开更多
关键词 stochastic computing hardware accelerator deep neural network
在线阅读 下载PDF
Decentralized Semi-Supervised Learning for Stochastic Configuration Networks Based on the Mean Teacher Method
13
作者 Kaijing Li Wu Ai 《Journal of Computer and Communications》 2024年第4期247-261,共15页
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ... The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments. 展开更多
关键词 stochastic Neural network Consistency Regularization Semi-Supervised Learning Decentralized Learning
在线阅读 下载PDF
A NOx Concentration Prediction Model Based on a Sparse Regularization Stochastic Configuration Network
14
作者 Aijun Yan Shenci Cao 《Instrumentation》 2024年第3期13-22,共10页
For accurate prediction of nitrogen oxides(NOx) concentration during the municipal solid waste incineration(MSWI) process, in this paper, a prediction modeling method based on a sparse regularization stochastic config... For accurate prediction of nitrogen oxides(NOx) concentration during the municipal solid waste incineration(MSWI) process, in this paper, a prediction modeling method based on a sparse regularization stochastic configuration network is proposed. The method combines Drop Connect regularization with L1 regularization. Based on the L1 regularization constraint stochastic configuration network output weights, Drop Connect regularization is applied to the input weights to introduce sparsity. A probability decay strategy based on network residuals is designed to address situations where the Drop Connect fixed drop probability affects model convergence. Finally, the generated sparse stochastic configuration network is used to establish the model, and is validated through experiments with standard datasets and actual data from an MSWI plant in Beijing. The experimental results prove that this modeling method exhibits high-precision prediction and generalization ability while effectively simplifying the model structure, which enables accurate prediction of NOx concentration. 展开更多
关键词 municipal solid waste incineration NOx concentration prediction stochastic configuration network sparse regularization
原文传递
TWO-DIMENSIONAL STOCHASTIC AIRFOIL OPTIMIZATION DESIGN METHOD BASED ON NEURAL NETWORKS 被引量:1
15
作者 林宇 王和平 彭润艳 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期324-330,共7页
To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, ... To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, a two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil aerodynamic coefficients and geometry parameter. These networks are combined with the probability density function obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Using the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area about Mach number and angle of attack. Compared with original airfoil and single point optimization design airfoil, results show that the two-dimensional stochastic method can improve the performance in a specific flight area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters. 展开更多
关键词 stochastic airfoil optimization surrogate model neural network uncertain factor genetic algorithm
在线阅读 下载PDF
Performance Evaluation for SDN Deployment: an Approach Based on Stochastic Network Calculus 被引量:5
16
作者 LIN Changting WU Chunming +2 位作者 HUANG Min WEN Zhenyu ZHENG Qiuhua 《China Communications》 SCIE CSCD 2016年第S1期98-106,共9页
The Open Flow implementations(SDNs) have been deployed increasingly on varieties of networks in research institutions as well as commercial institutions. To develop an Open Flow implementation, it is required to under... The Open Flow implementations(SDNs) have been deployed increasingly on varieties of networks in research institutions as well as commercial institutions. To develop an Open Flow implementation, it is required to understand the performance of the network. A few benchmark tools(e.g., Cbench and OFlops) can be used to measure the network performance, while these tools take considerable time to simulate traffic behaviors and generate the required results,therefore extending the development time. In this paper, we present an analytical model, which is based on stochastic network calculus theory, for evaluating the performance of switch to controller.The previous studies show that stochastic network calculus can provide realistic emulation of real network traffic behaviors. Our model is evaluated by using both simulation tool and realistic testbed.The results show the stochastic network calculus based analysis model can realistically measure the network performance of the end-to-end properties between controller and switch. 展开更多
关键词 software-defined networkING endto-end performance stochastic network CALCULUS
在线阅读 下载PDF
Delay-aided stochastic multiresonances on scale-free FitzHugh-Nagumo neuronal networks 被引量:3
17
作者 甘春标 Perc Matjaz 王青云 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期128-133,共6页
The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker ... The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks. 展开更多
关键词 neuronal networks DELAY stochastic resonance
原文传递
Passivity analysis for uncertain stochastic neural networks with discrete interval and distributed time-varying delays 被引量:3
18
作者 P.Balasubramaniam G.Nagamani 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期688-697,共10页
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ... The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions. 展开更多
关键词 linear matrix inequality(LMI) stochastic neural network PASSIVITY interval time-varying delay Lyapunov method.
在线阅读 下载PDF
End-to-End Latency Evaluation of the Sat5G Network Based on Stochastic Network Calculus 被引量:4
19
作者 Huaifeng Shi Chengsheng Pan +2 位作者 Li Yang Debin Wei Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2020年第11期1335-1348,共14页
Simultaneous use of heterogeneous radio access technologies to increase the performance of real-time,reliability and capacity is an inherent feature of satellite-5G integrated network(Sat5G).However,there is still a l... Simultaneous use of heterogeneous radio access technologies to increase the performance of real-time,reliability and capacity is an inherent feature of satellite-5G integrated network(Sat5G).However,there is still a lack of theoretical characterization of whether the network can satisfy the end-to-end transmission performance for latency-sensitive service.To this end,we build a tandem model considering the connection relationship between the various components in Sat5G network architecture,and give an end-to-end latency calculation function based on this model.By introducing stochastic network calculus,we derive the relationship between the end-to-end latency bound and the violation probability considering the traffic characteristics of multimedia.Numerical results demonstrate the impact of different burst states and different service rates on this relationship,which means the higher the burst of arrival traffic and the higher the average rate of arrival traffic,the greater the probability of end-to-end latency violation.The results will provide valuable guidelines for the traffic control and cache management in Sat5G network. 展开更多
关键词 5G satellite network stochastic network calculus latency evaluation
在线阅读 下载PDF
Stochastic synchronization for time-varying complex dynamical networks 被引量:2
20
作者 Guo Xiao-Yong Li Jun-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期123-130,共8页
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal... This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results. 展开更多
关键词 stochastic dynamical networks SYNCHRONIZATION time-varying coupling strength adaptive control
原文传递
上一页 1 2 90 下一页 到第
使用帮助 返回顶部