期刊文献+
共找到5,403篇文章
< 1 2 250 >
每页显示 20 50 100
A CLASS OF STATIONARY MODELS OF SINGULAR STOCHASTIC CONTROL 被引量:9
1
作者 刘坤会 秦明达 陆传赉 《Acta Mathematica Scientia》 SCIE CSCD 2004年第1期139-150,共12页
A class of stationary models of singular stochastic control has been studied, in which the state is extended to solution of a class of S.D.E. from Wiener process. The existence of optimal control has been proved in al... A class of stationary models of singular stochastic control has been studied, in which the state is extended to solution of a class of S.D.E. from Wiener process. The existence of optimal control has been proved in all cases under some weaker conditions, and the structure of optimal control may be characterized. 展开更多
关键词 Singular stochastic control stationary model stochastic differential equation variational equation system
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
2
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm stochastic cooperative information condition Sensor networks (L_(p))-exponential stability stochastic regression model
原文传递
Extinction and Optimal Control of Stochastic Epidemic Model with Multiple Vaccinations and Time Delay
3
作者 YANG Rujie QIU Hong JU Xuewei 《数学理论与应用》 2025年第2期110-121,共12页
In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and co... In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation. 展开更多
关键词 stochastic epidemic model Multiple vaccinations Extinction of disease Isolation delay Optimal control
在线阅读 下载PDF
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
4
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 Event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
Mathematical Modeling of Leukemia within Stochastic Fractional Delay Differential Equations
5
作者 Ali Raza Feliz Minhós +1 位作者 Umar Shafique Muhammad Mohsin 《Computer Modeling in Engineering & Sciences》 2025年第6期3411-3431,共21页
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6... In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities. 展开更多
关键词 Leukemia disease stochastic fractional delayed model stability analysis Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD) computational methods
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
6
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Computational Modeling of Streptococcus Suis Dynamics via Stochastic Delay Differential Equations
7
作者 Umar Shafique Ali Raza +4 位作者 Dumitru Baleanu Khadija Nasir Muhammad Naveed Abu Bakar Siddique Emad Fadhal 《Computer Modeling in Engineering & Sciences》 2025年第4期449-476,共28页
Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultip... Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultiple geographic regions in China.Methods:The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features,including positivity,boundedness equilibria,reproduction number,and parameter sensitivity.Stochastic Euler,Runge Kutta,and EulerMaruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population.However,the dynamic qualities of the suggested model cannot be restored using these techniques.Results:For the stochastic delay differential equations of the model,the non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as negativity,unboundedness,inconsistency,and instability of the findings.Results from traditional stochastic methods either converge conditionally or diverge over time.The stochastic non-negative step size convergence nonstandard finite difference(NSFD)method unconditionally converges to the model’s true states.Conclusions:This study improves our understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and opens up new avenues for the study of cognitive processes and neuronal analysis.Theplotted interaction behaviour and new solution comparison profiles. 展开更多
关键词 Streptococcus suis disease model stochastic delay differential equations(SDDEs) existence and uniqueness Lyapunov function stability results reproduction number computational methods
在线阅读 下载PDF
Sampled-data Observer Design for a Class of Stochastic Nonlinear Systems Based on the Approximate Discrete-time Models 被引量:2
8
作者 Xinxin Fu Yu Kang Pengfei Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期507-511,共5页
In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher prec... In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example. 展开更多
关键词 Approximation model exponentially bounded sampled-data observer stochastic nonlinear
在线阅读 下载PDF
Simplifying Stochastic Mathematical Models of Biochemical Systems 被引量:2
9
作者 Silvana Ilie Samaneh Gholami 《Applied Mathematics》 2013年第1期248-256,共9页
Stochastic modeling of biochemical reactions taking place at the cellular level has become the subject of intense research in recent years. Molecular interactions in a single cell exhibit random fluctuations. These fl... Stochastic modeling of biochemical reactions taking place at the cellular level has become the subject of intense research in recent years. Molecular interactions in a single cell exhibit random fluctuations. These fluctuations may be significant when small populations of some reacting species are present and then a stochastic description of the cellular dynamics is required. Often, the biochemically reacting systems encountered in applications consist of many species interacting through many reaction channels. Also, the dynamics of such systems is typically non-linear and presents multiple time-scales. Consequently, the stochastic mathematical models of biochemical systems can be quite complex and their analysis challenging. In this paper, we present a method to reduce a stochastic continuous model of well-stirred biochemical systems, the Chemical Langevin Equation, while preserving the overall behavior of the system. Several tests of our method on models of practical interest gave excellent results. 展开更多
关键词 stochastic modeling Sensitivity Analysis model REDUCTION TECHNIQUES CHEMICAL LANGEVIN EQUATION
在线阅读 下载PDF
Deterministic and Stochastic Schistosomiasis Models with General Incidence 被引量:1
10
作者 Stanislas Ouaro Ali Traoré 《Applied Mathematics》 2013年第12期1682-1693,共12页
In this paper, deterministic and stochastic models for schistosomiasis involving four sub-populations are developed. Conditions are given under which system exhibits thresholds behavior. The disease-free equilibrium i... In this paper, deterministic and stochastic models for schistosomiasis involving four sub-populations are developed. Conditions are given under which system exhibits thresholds behavior. The disease-free equilibrium is globally asymptotically stable if R0 ?and the unique endemic equilibrium is globally asymptotically stable when R0 >?1. The populations are computationally simulated under various conditions. Comparisons are made between the deterministic and the stochastic model. 展开更多
关键词 Computational Simulation General INCIDENCE REPRODUCTION Number SCHISTOSOMIASIS model stochastic Differential Equation
在线阅读 下载PDF
Reducing Stochastic Discrete Models of Biochemical Networks 被引量:1
11
作者 Samaneh Gholami Silvana Ilie 《Applied Mathematics》 2021年第5期449-469,共21页
Biochemical systems have numerous practical applications, in particular to the study of critical intracellular processes. Frequently, biochemical kinetic models depict cellular processes as systems of chemical reactio... Biochemical systems have numerous practical applications, in particular to the study of critical intracellular processes. Frequently, biochemical kinetic models depict cellular processes as systems of chemical reactions. Many biological processes in a cell are inherently stochastic, due to the existence of some low molecular amounts. These stochastic fluctuations may have a great effect on the biochemical system’s behaviour. In such cases, stochastic models are necessary to accurately describe the system’s dynamics. Biochemical systems at the cellular level may entail many species or reactions and their mathematical models may be non-linear and with multiple scales in time. In this work, we provide a numerical technique for simplifying stochastic discrete models of well-stirred biochemical systems, which ensures that the main properties of the original system are preserved. The proposed technique employs sensitivity analysis and requires solving an optimization problem. The numerical tests on several models of practical interest show that our model reduction strategy performs very well. 展开更多
关键词 stochastic Simulation Algorithm stochastic Biochemical Kinetics Sensitivity Analysis model Reduction Methods
在线阅读 下载PDF
Cyber Security: Nonlinear Stochastic Models for Predicting the Exploitability 被引量:1
12
作者 Sasith M. Rajasooriya Chris. P. Tsokos Pubudu Kalpani Kaluarachchi 《Journal of Information Security》 2017年第2期125-140,共16页
Obtaining complete information regarding discovered vulnerabilities looks extremely difficult. Yet, developing statistical models requires a great deal of such complete information about the vulnerabilities. In our pr... Obtaining complete information regarding discovered vulnerabilities looks extremely difficult. Yet, developing statistical models requires a great deal of such complete information about the vulnerabilities. In our previous studies, we introduced a new concept of “Risk Factor” of vulnerability which was calculated as a function of time. We introduced the use of Markovian approach to estimate the probability of a particular vulnerability being at a particular “state” of the vulnerability life cycle. In this study, we further develop our models, use available data sources in a probabilistic foundation to enhance the reliability and also introduce some useful new modeling strategies for vulnerability risk estimation. Finally, we present a new set of Non-Linear Statistical Models that can be used in estimating the probability of being exploited as a function of time. Our study is based on the typical security system and vulnerability data that are available. However, our methodology and system structure can be applied to a specific security system by any software engineer and using their own vulnerabilities to obtain their probability of being exploited as a function of time. This information is very important to a company’s security system in its strategic plan to monitor and improve its process for not being exploited. 展开更多
关键词 VULNERABILITY LIFECYCLE stochastic modeling Security RISK FACTOR MARKOV Process RISK Evaluation
暂未订购
Assessment of prediction performances of stochastic models:Monthly groundwater level prediction in Southern Italy 被引量:1
13
作者 O Boulariah PA Mikhailov +2 位作者 A Longobardi AN Elizariev SG Aksenov 《Journal of Groundwater Science and Engineering》 2021年第2期161-170,共10页
Stochastic modelling of hydrological time series with insufficient length and data gaps is a serious challenge since these problems significantly affect the reliability of statistical models predicting and forecasting... Stochastic modelling of hydrological time series with insufficient length and data gaps is a serious challenge since these problems significantly affect the reliability of statistical models predicting and forecasting skills.In this paper,we proposed a method for searching the seasonal autoregressive integrated moving average(SARIMA)model parameters to predict the behavior of groundwater time series affected by the issues mentioned.Based on the analysis of statistical indices,8 stations among 44 available within the Campania region(Italy)have been selected as the highest quality measurements.Different SARIMA models,with different autoregressive,moving average and differentiation orders had been used.By reviewing the criteria used to determine the consistency and goodness-of-fit of the model,it is revealed that the model with specific combination of parameters,SARIMA(0,1,3)(0,1,2)_(12),has a high R^(2) value,larger than 92%,for each of the 8 selected stations.The same model has also good performances for what concern the forecasting skills,with an average NSE of about 96%.Therefore,this study has the potential to provide a new horizon for the simulation and reconstruction of groundwater time series within the investigated area. 展开更多
关键词 Groundwater level forecast stochastic modelling Southern Italy SEASONALITY HOMOGENEITY
在线阅读 下载PDF
Dynamics and Control of Infectious Diseases in Stochastic Metapopulation Models 被引量:1
14
作者 Ariel Felix Gualtieri Juan Pedro Hecht 《Journal of Life Sciences》 2011年第7期503-508,共6页
The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are ... The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios. 展开更多
关键词 Epidemic dynamics and control stochastic metapopulation models SIS and SIR schemes.
在线阅读 下载PDF
Multiple Models Direct Adaptive Controller for a Stochastic Non-minimum Phase System
15
作者 郑益慧 王昕 +1 位作者 李少远 姜建国 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期578-586,共9页
For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the... For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the region where the system parameters jump and improve the transient response,while another two adaptive models are used to guarantee the stability.Utilizing generalized minimum variance design method,it adopts the stochastic system estimation algorithm with optimal controller design method to identify the controller parameter directly.Finally,the global convergence is given.The simulation proves the effectives of the controller proposed. 展开更多
关键词 multiple models stochastic system non-minimum phase direct adaptive control multivariable system
原文传递
A New Formula for Partitions in a Set of Entities into Empty and Nonempty Subsets, and Its Application to Stochastic and Agent-Based Computational Models
16
作者 Ghennadii Gubceac Roman Gutu Florentin Paladi 《Applied Mathematics》 2013年第10期14-21,共8页
In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in... In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe properly the absence of the corresponding type i of state in the system, i.e. when its “share” Pi =0?. Accordingly, a new equation for partitions P (N, m)? in a set of entities into both empty and nonempty subsets was derived. The indistinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size?0≤ni ≥N. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, from completely liquid state?typeL = {n1 =N, n2 = 0} to the completely crystalline state??typeC= {n1 =0, n2 = N }. These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Finally, the present developments in the physics of complex systems, in particular the structural relaxation of super-cooled liquids and glasses, are discussed by using such stochastic cluster-based models. 展开更多
关键词 PARTITIONS AGENT-BASED models stochastic Processes Complex Systems
在线阅读 下载PDF
THE TURNPIKE IN DYNAMIC STOCHASTIC ECONOMIC GROWTH MODELS FOR STATE-CONTINGENT CAPITAL STOCKS
17
作者 Chiang Chiaoning Yu Xiaopei +1 位作者 He Sui Jian Ming 《Acta Mathematica Scientia》 SCIE CSCD 1994年第2期204-212,共9页
A stochastic economic growth model may be transformed into a deterministic economic growth model with an infiaite dimentional Banach space of state-contingent capital stocks[6].This paper proves that under the framewo... A stochastic economic growth model may be transformed into a deterministic economic growth model with an infiaite dimentional Banach space of state-contingent capital stocks[6].This paper proves that under the framework,the stochastic analogUes of the asymptotic turnpike theorems in the standard deterministic economic growth model[5]will continue tO hold if we assume that essentially smooth programs satisfy uniformly essentially dominant diagonal condition. 展开更多
关键词 DYNAMIC CONTINGENT CAPITAL ECONOMIC FOR GROWTH IN models STATE stochastic
在线阅读 下载PDF
Solving Nonlinear Stochastic Diffusion Models with Nonlinear Losses Using the Homotopy Analysis Method
18
作者 Aisha A. Fareed Hanafy H. El-Zoheiry +2 位作者 Magdy A. El-Tawil Mohammed A. El-Beltagy Hany N. Hassan 《Applied Mathematics》 2014年第1期115-127,共13页
This paper deals with the construction of approximate series solutions of diffusion models with stochastic excitation and nonlinear losses using the homotopy analysis method (HAM). The mean, variance and other statist... This paper deals with the construction of approximate series solutions of diffusion models with stochastic excitation and nonlinear losses using the homotopy analysis method (HAM). The mean, variance and other statistical properties of the stochastic solution are computed. The solution technique was applied successfully to the 1D and 2D diffusion models. The scheme shows importance of choice of convergence-control parameter to guarantee the convergence of the solutions of nonlinear differential Equations. The results are compared with the Wiener-Hermite expansion with perturbation (WHEP) technique and good agreements are obtained. 展开更多
关键词 HAM TECHNIQUE WHEP TECHNIQUE stochastic PDES Diffusion models
在线阅读 下载PDF
On Diagnostics in Stochastic Restricted Linear Regression Models
19
作者 Shuling Wang Man Liu Xiaohong Deng 《Open Journal of Statistics》 2014年第9期757-764,共8页
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the... The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results. 展开更多
关键词 stochastic RESTRICTED Linear Regression model stochastic RESTRICTED RIDGE ESTIMATOR STATISTICAL DIAGNOSTICS
在线阅读 下载PDF
Stochastic Models to Mitigate Sparse Sensor Attacks in Continuous-Time Non-Linear Cyber-Physical Systems
20
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computers, Materials & Continua》 SCIE EI 2023年第9期3189-3218,共30页
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n... Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios. 展开更多
关键词 Cyber-physical systems sparse sensor attack non-linear models stochastic models security
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部