期刊文献+
共找到5,373篇文章
< 1 2 250 >
每页显示 20 50 100
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
1
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm stochastic cooperative information condition Sensor networks (L_(p))-exponential stability stochastic regression model
原文传递
Extinction and Optimal Control of Stochastic Epidemic Model with Multiple Vaccinations and Time Delay
2
作者 YANG Rujie QIU Hong JU Xuewei 《数学理论与应用》 2025年第2期110-121,共12页
In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and co... In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation. 展开更多
关键词 stochastic epidemic model Multiple vaccinations Extinction of disease Isolation delay Optimal control
在线阅读 下载PDF
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
3
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 Event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
Mathematical Modeling of Leukemia within Stochastic Fractional Delay Differential Equations
4
作者 Ali Raza Feliz Minhós +1 位作者 Umar Shafique Muhammad Mohsin 《Computer Modeling in Engineering & Sciences》 2025年第6期3411-3431,共21页
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6... In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities. 展开更多
关键词 Leukemia disease stochastic fractional delayed model stability analysis Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD) computational methods
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
5
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:2
6
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
原文传递
Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation 被引量:2
7
作者 Wen-zhuo Wang Zeng-chuan Dong +3 位作者 Tian-yan Zhang Li Ren Lian-qing Xue Teng Wu 《Water Science and Engineering》 EI CAS CSCD 2024年第1期13-20,共8页
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b... Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization. 展开更多
关键词 stochastic monthly streamflow simulation Mixed D-vine copula Conditional quantile model Up-to-down sequential method Tangnaihai hydrological station
在线阅读 下载PDF
Analytical and NumericalMethods to Study the MFPT and SR of a Stochastic Tumor-Immune Model
8
作者 Ying Zhang Wei Li +1 位作者 Guidong Yang Snezana Kirin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2177-2199,共23页
The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno... The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer. 展开更多
关键词 stochastic tumor-immune model mean first-passage time stochastic resonance signal-to-noise ratio back-propagation neural network
在线阅读 下载PDF
Advances and challenges in developing a stochastic model for multi-scale fluid dynamic simulation:One-dimensional turbulence
9
作者 Chongpei CHEN Tianyun GAO +2 位作者 Jianhan LIANG Lin ZHANG Mingbo SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期1-23,共23页
The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional... The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional models typically show limitations in universality,accuracy,and reliance on past experience.The stochastic multi-scale models show great potential in addressing these issues by representing turbulence across all characteristic scales in a reduced-dimensional space,maintaining sufficient accuracy while reducing computational cost.This review systematically summarizes advances in methods related to a widely used and refined stochastic multi-scale model,the One-Dimensional Turbulence(ODT).The advancements in formulations are emphasized for stand-alone incompressible ODT models,stand-alone compressible ODT models,and coupling methods.Some diagrams are also provided to facilitate more readers to understand the ODT methods.Subsequently,the significant developments and applications of stand-alone ODT models and coupling methods are introduced and critically evaluated.Despite the extensively recognized effectiveness of ODT models in low-speed turbulent flows,it is crucial to emphasize that there is still a research gap in the field of ODT coupling methods that are capable of accurately and efficiently simulating complex,three-dimensional,high-speed compressible turbulent flows up to now.Based on an analysis of the advantages and limitations of existing ODT methods,the recent advancement in the conservative compressible ODT model is considered to have provided a promising approach to tackle the modeling challenges of high-speed compressible turbulence.Therefore,this review outlines several recommended new research subjects and challenging issues to inspire further research in simulating complex,three-dimensional,high-speed compressible turbulent flows using ODT models. 展开更多
关键词 TURBULENCE Compressible flow Fluid dynamics Turbulence models stochastic
原文传递
Stochastic seismic inversion and Bayesian facies classification applied to porosity modeling and igneous rock identification
10
作者 Fábio Júnior Damasceno Fernandes Leonardo Teixeira +1 位作者 Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期918-935,共18页
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ... We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability. 展开更多
关键词 stochastic inversion Bayesian classification Porosity modeling Carbonate reservoirs Igneous rocks
原文传递
双区间删失数据下基于Stochastic EM算法的比例优势模型的估计研究
11
作者 王淑影 李红伟 赵波 《应用概率统计》 北大核心 2025年第3期434-447,共14页
潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的... 潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的研究中,后续时间仅考虑发生右删失或区间删失的研究很多,考虑右删失和区间删失同时存在的研究成果相对较少;此外研究方法大多基于Cox模型.本文在后续时间同时存在右删失和区间删失的这类双区间删失数据下建立比例优势模型,利用Stochastic EM算法处理双区间删失数据并进行极大似然估计.通过模拟研究评估了所提方法在有限样本下的优良性,接着利用该方法分析了AIDS数据. 展开更多
关键词 双区间删失数据 比例优势模型 stochastic EM算法 拒绝抽样
在线阅读 下载PDF
Automatic modeling algorithm of stochastic error for inertial sensors
12
作者 Luodi Zhao Long Zhao 《Control Theory and Technology》 EI CSCD 2024年第1期81-91,共11页
This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generali... This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generalized method of wavelet moments (GMWM), whose estimator was proven to be consistent and asymptotically normally distributed. This algorithm is suitable mainly (but not only) for the combination of several stochastic processes, where the model identification and parameter estimation are quite difficult for the traditional methods, such as the Allan variance and the power spectral density analysis. This algorithm further explores the complete stochastic error models and the candidate model ranking criterion to realize automatic model identification and determination. The best model is selected by making the trade-off between the model accuracy and the model complexity. The validation of this approach is verified by practical examples of model selection for MEMS-IMUs (micro-electro-mechanical system inertial measurement units) in varying dynamic conditions. 展开更多
关键词 GMWM stochastic process Inertial sensor Sensor calibration Error model Allan variance
原文传递
Simultaneous Bulk-and Surface-initiated Living Polymerization Studied with a Heterogeneous Stochastic Reaction Model
13
作者 Jia-Shu Ma Zhi-Ning Huang +4 位作者 Jia-Hao Li Bang-Ping Jiang Yan-Da Liao Shi-Chen Ji Xing-Can Shen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期364-372,I0008,共10页
To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers re... To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization. 展开更多
关键词 Surface-initiated polymerization Polymer brush stochastic reaction model Heterogeneous polymerization Simultaneous polymerization
原文传递
A Stochastic Model to Assess the Epidemiological Impact of Vaccine Booster Doses on COVID-19 and Viral Hepatitis B Co-Dynamics with Real Data
14
作者 Andrew Omame Mujahid Abbas Dumitru Baleanu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2973-3012,共40页
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi... A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted. 展开更多
关键词 Viral hepatitis B COVID-19 stochastic model EXTINCTION ERGODICITY real data
在线阅读 下载PDF
A Non-Stationary Beam-Enabled Stochastic Channel Model and Characterization over Non-Reciprocal Beam Patterns
15
作者 Zhang Jiachi Liu Liu +3 位作者 Tan Zhenhui Wang Kai Li Lu Zhou Tao 《China Communications》 SCIE CSCD 2024年第10期43-58,共16页
The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with tim... The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns. 展开更多
关键词 beam channel model channel non-stationarity non-reciprocal beam patterns stochastic geometry
在线阅读 下载PDF
Numerical Analysis of Bacterial Meningitis Stochastic Delayed Epidemic Model through Computational Methods
16
作者 Umar Shafique Mohamed Mahyoub Al-Shamiri +3 位作者 Ali Raza Emad Fadhal Muhammad Rafiq Nauman Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期311-329,共19页
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng... Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results. 展开更多
关键词 Bacterial Meningitis disease stochastic delayed model stability analysis extinction and persistence computational methods
在线阅读 下载PDF
Stochastic modeling and analysis of hepatitis and tuberculosis co-infection dynamics
17
作者 Sayed Murad Ali Shah Yufeng Nie +2 位作者 Anwarud Din Abdulwasea Alkhazzan Bushra Younas 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期137-153,共17页
Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important... Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections. 展开更多
关键词 tuberculosis(TB) hepatitis B virus(HBV) white noise Lévy noise stochastic model
原文传递
Stochastic Maximum Principle for Optimal Advertising Models with Delay and Non-Convex Control Spaces
18
作者 Giuseppina Guatteri Federica Masiero 《Advances in Pure Mathematics》 2024年第6期442-450,共9页
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi... In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation. 展开更多
关键词 stochastic Optimal Control Delay Equations Advertisement models stochastic Maximum Principle
在线阅读 下载PDF
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
19
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling Turbulent flows Data analysis stochastic analysis Image velocimetry
在线阅读 下载PDF
Stochastic Bifurcation of an SIS Epidemic Model with Treatment and Immigration
20
作者 Weipeng Zhang Dan Gu 《Journal of Applied Mathematics and Physics》 2024年第6期2254-2280,共27页
In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochast... In this paper, we investigate an SIS model with treatment and immigration. Firstly, the two-dimensional model is simplified by using the stochastic averaging method. Then, we derive the local stability of the stochastic system by computing the Lyapunov exponent of the linearized system. Further, the global stability of the stochastic model is analyzed based on the singular boundary theory. Moreover, we prove that the model undergoes a Hopf bifurcation and a pitchfork bifurcation. Finally, several numerical examples are provided to illustrate the theoretical results. . 展开更多
关键词 Epidemic model stochastic Averaging Method Singular Boundary Theory stochastic Bifurcation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部