This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave st...This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave sterilization techniques, irradiation sterilization, light radiation sterilization and gas sterilization own their unique advan- tages for different drugs sterilization requirements, which are worth further promotion.展开更多
As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a ...As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment.Based on this,the study reviews sterilization technologies in the built environment,focusing on the principles,efficiency and applicability,revealing advantages and limitations,and summarizing current research advances.Despite the efficacy of single sterilization technologies in specific environments,the corresponding side effects still exist.Thus,this review highlights the efficiency of hybrid sterilization technologies,providing an in-depth understanding of the practical application in the built environment.Also,it presents an outlook on the future direction of sterilization technology,including the development of new methods that are more efficient,energy-saving,and targeted to better address microbial contamination in the complex and changing built environment.Overall,this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future,as well as a scientific basis for developing more effective air quality control strategies.展开更多
Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to p...Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.展开更多
文摘This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave sterilization techniques, irradiation sterilization, light radiation sterilization and gas sterilization own their unique advan- tages for different drugs sterilization requirements, which are worth further promotion.
文摘As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment.Based on this,the study reviews sterilization technologies in the built environment,focusing on the principles,efficiency and applicability,revealing advantages and limitations,and summarizing current research advances.Despite the efficacy of single sterilization technologies in specific environments,the corresponding side effects still exist.Thus,this review highlights the efficiency of hybrid sterilization technologies,providing an in-depth understanding of the practical application in the built environment.Also,it presents an outlook on the future direction of sterilization technology,including the development of new methods that are more efficient,energy-saving,and targeted to better address microbial contamination in the complex and changing built environment.Overall,this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future,as well as a scientific basis for developing more effective air quality control strategies.
基金funded by the National Natural Science Foundation of China(No.42076044)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC025)+5 种基金the Key R&D Program of Shandong Province,China(No.2022CXPT027)the Chinese Academy of Sciences President’s International Fellowship Initiative(No.2023VEA0007)the Postdoctoral Fellowship Program of CPSF(No.GZB20230769)the China Postdoctoral Science Foundation(No.2023M743529)the Shandong Postdoctoral Science Foundation(No.SDBX202302014)Excellent Postdoctoral Incentive Program of Chinese Academy of Sciences,and Qingdao Postdoctoral Science Foundation(No.QDBSH20230202117).
文摘Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.