The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Pr...The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Prudente et al. [Prudente F V, Marques J M C and Maniero A M 2009 Chem. Phys. Lett. 474 18]. The reactive probability of the title reaction is computed. The vector correlations and four polarization-dependent generalized differential cross sections (PDDCSs) at different collision energies are presented. The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work. The results indicate that the product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.展开更多
The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies ...The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.展开更多
To investigate the effect of a reagent's rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT...To investigate the effect of a reagent's rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3A~ and 3Aq potentiM energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product' rotational momentum are discussed at one fixed collision energy. Effects of reagents' rotational excitation on the reaction do exist regularly.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11105022)the Fundamental Research Funds for the Central Universities(Grant Nos.2011QN142 and 2012QN066)
文摘The quasi-classical trajectory (QCT) method is used to calculate the stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants based on an accurate potential energy surface reported by Prudente et al. [Prudente F V, Marques J M C and Maniero A M 2009 Chem. Phys. Lett. 474 18]. The reactive probability of the title reaction is computed. The vector correlations and four polarization-dependent generalized differential cross sections (PDDCSs) at different collision energies are presented. The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work. The results indicate that the product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.
文摘The quasi-classical trajectory calculations O++DH(v=0,j=0)→OD++H reactions on the RODRIGO potential energy surface have been carried out to study the isotope effect on stereo-dynamics at the collision energies of 1.0, 1.5, 2.0, and 2.5 eV. The distributions of dihedral angle P(~r) and the distributions of P(Or) are discussed. Furthermore, the angular distributions of the product rotational vectors in the form of polar plot in θr and φr are calculated. The differential cross section shows interesting phenomenon that the reaction is dominated by the direct reaction mechanism. Reaction probability and reaction cross section are also calculated. The calculations indicate that the stereo-dynamics properties of the title reactions are sensitive to the collision energy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50972082 and 51072101)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20090131120077)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011EMM019 and ZR2012AM007)
文摘To investigate the effect of a reagent's rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3A~ and 3Aq potentiM energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product' rotational momentum are discussed at one fixed collision energy. Effects of reagents' rotational excitation on the reaction do exist regularly.