CO oxidation has been studied for more than a century;however,molecular-level understanding of its activation protocol and related intermediates remains elusive.Here,we present a unified mechanistic and kinetic pictur...CO oxidation has been studied for more than a century;however,molecular-level understanding of its activation protocol and related intermediates remains elusive.Here,we present a unified mechanistic and kinetic picture of various electronic metal-support interactions within platinum-carbon catalysts via in situ spectroscopic/kinetic analyses and multi-scale simulations.Transient kinetic analysis and molecular dynamics simulations with a reactive force field provided a quantitative description of the competition between the oxygen association and oxygen dissociation mechanisms tuned by the interfacial charge distribution and CO coverage.Steady-state isotopic transient kinetic analysis and density functional theory calculations revealed a simultaneous shift in the rate-determining step(RDS)from O_(2)^(*)dissociation to O^(*)and CO^(*)and O_(2)^(*)and CO^(*)association.A de novo strategy from the interfacial charge distribution to the reaction mechanism,kinetics/thermodynamics of RDS,and,ultimately,catalytic performance was developed to quantitatively map the above CO activation mechanism with an order-of-magnitude increase in reactivity.The proposed catalytic picture and de novo strategy are expected to prompt the development of theories and methodologies for heterogeneous catalysis.展开更多
基金supported by grants from the Natural Science Foundation of China(21922803,22178100,92034301,22008066,and 21776077)the China Postdoctoral Science Foundation(BX20190116)+2 种基金the Innovation Program of Shanghai Municipal Education Commission,the Program of Shanghai Academic/Technology Research Leader(21XD1421000)111 Project of the Ministry of Education of China(B08021)BL14W1(Shanghai Synchrotron Radiation Facility)for the beam time and assistance in the experiments.
文摘CO oxidation has been studied for more than a century;however,molecular-level understanding of its activation protocol and related intermediates remains elusive.Here,we present a unified mechanistic and kinetic picture of various electronic metal-support interactions within platinum-carbon catalysts via in situ spectroscopic/kinetic analyses and multi-scale simulations.Transient kinetic analysis and molecular dynamics simulations with a reactive force field provided a quantitative description of the competition between the oxygen association and oxygen dissociation mechanisms tuned by the interfacial charge distribution and CO coverage.Steady-state isotopic transient kinetic analysis and density functional theory calculations revealed a simultaneous shift in the rate-determining step(RDS)from O_(2)^(*)dissociation to O^(*)and CO^(*)and O_(2)^(*)and CO^(*)association.A de novo strategy from the interfacial charge distribution to the reaction mechanism,kinetics/thermodynamics of RDS,and,ultimately,catalytic performance was developed to quantitatively map the above CO activation mechanism with an order-of-magnitude increase in reactivity.The proposed catalytic picture and de novo strategy are expected to prompt the development of theories and methodologies for heterogeneous catalysis.