期刊文献+
共找到10,611篇文章
< 1 2 250 >
每页显示 20 50 100
Is there an Association between Per-and Poly-Fluoroalkyl Substances and Serum Pepsinogens?Evidence from Linear Regression and Bayesian Kernel Machine Regression Analyses
1
作者 Jing Wu Shenglan Yang +2 位作者 Yiyan Wang Yuzhong Yan Ming Li 《Biomedical and Environmental Sciences》 2025年第6期763-767,共5页
Gastric cancer is the third leading cause of cancer-related mortality and remains a major global health issue^([1]).Annually,approximately 479,000individuals in China are diagnosed with gastric cancer,accounting for a... Gastric cancer is the third leading cause of cancer-related mortality and remains a major global health issue^([1]).Annually,approximately 479,000individuals in China are diagnosed with gastric cancer,accounting for almost 45%of all new cases worldwide^([2]). 展开更多
关键词 Bayesian kernel machine regression gastric canceraccounting gastric cancer per poly fluoroalkyl substances serum pepsinogens linear regression
暂未订购
Multiple Linear Regression Analysis of Vertical Distribution of Near-Shore Suspended Sediment
2
作者 Mengmeng Wei Wenjin Zhu +1 位作者 Xiaotian Dong Xingyuan Chen 《Journal of Environmental Science and Engineering(B)》 2025年第1期11-18,共8页
According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport... According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport characteristics of offshore sediment were used to take lnz/h,lnc_(a),c_(a),u,lnu and z/h as the independent variables.The multiple liner regression method was used to analyze the influence of the independent variables on the vertical distribution of sediment concentration.By using the method of significance test,the factors(ln𝑢)that have less influence on sediment concentration among 6 variables were eliminated.The correlation coefficient between the calculated sediment concentration and the measured sediment concentration indicates that the adopted variables can reflect the characteristics of vertical distribution of concentration of fine sediment near shore under complex dynamic conditions. 展开更多
关键词 Rouse Formula multiple linear regression vertical distribution of suspended sediment Hai’an Bay
在线阅读 下载PDF
Semiparametric expectile regression for high-dimensional heavy-tailed and heterogeneous data
3
作者 ZHAO Jun YAN Guan-ao ZHANG Yi 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期53-77,共25页
High-dimensional heterogeneous data have acquired increasing attention and discussion in the past decade.In the context of heterogeneity,semiparametric regression emerges as a popular method to model this type of data... High-dimensional heterogeneous data have acquired increasing attention and discussion in the past decade.In the context of heterogeneity,semiparametric regression emerges as a popular method to model this type of data in statistics.In this paper,we leverage the benefits of expectile regression for computational efficiency and analytical robustness in heterogeneity,and propose a regularized partially linear additive expectile regression model with a nonconvex penalty,such as SCAD or MCP,for high-dimensional heterogeneous data.We focus on a more realistic scenario where the regression error exhibits a heavy-tailed distribution with only finite moments.This scenario challenges the classical sub-gaussian distribution assumption and is more prevalent in practical applications.Under certain regular conditions,we demonstrate that with probability tending to one,the oracle estimator is one of the local minima of the induced optimization problem.Our theoretical analysis suggests that the dimensionality of linear covariates that our estimation procedure can handle is fundamentally limited by the moment condition of the regression error.Computationally,given the nonconvex and nonsmooth nature of the induced optimization problem,we have developed a two-step algorithm.Finally,our method’s effectiveness is demonstrated through its high estimation accuracy and effective model selection,as evidenced by Monte Carlo simulation studies and a real-data application.Furthermore,by taking various expectile weights,our method effectively detects heterogeneity and explores the complete conditional distribution of the response variable,underscoring its utility in analyzing high-dimensional heterogeneous data. 展开更多
关键词 expectile regression HETEROGENEITY heavy tail partially linear additive model
在线阅读 下载PDF
Intelligent Estimation of ESR and C in AECs for Buck Converters Using Signal Processing and ML Regression
4
作者 Acácio M.R.Amaral 《Computers, Materials & Continua》 2025年第11期3825-3859,共35页
Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial loss... Power converters are essential components in modern life,being widely used in industry,automation,transportation,and household appliances.In many critical applications,their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety.The capacitors forming the output filter,typically aluminumelectrolytic capacitors(AECs),are among the most critical and susceptible components in power converters.The electrolyte in AECs often evaporates over time,causing the internal resistance to rise and the capacitance to drop,ultimately leading to component failure.Detecting this fault requires measuring the current in the capacitor,rendering the method invasive and frequently impractical due to spatial constraints or operational limitations imposed by the integration of a current sensor in the capacitor branch.This article proposes the implementation of an online noninvasive fault diagnosis technique for estimating the Equivalent Series Resistance(ESR)and Capacitance(C)values of the capacitor,employing a combination of signal processing techniques(SPT)and machine learning(ML)algorithms.This solution relies solely on the converter’s input and output signals,therefore making it a non-invasive approach.The ML algorithm used was linear regression,applied to 27 attributes,21 of which were generated through feature engineering to enhance the model’s performance.The proposed solution demonstrates an R^(2) score greater than 0.99 in the estimation of both ESR and C. 展开更多
关键词 Buck converter boost converter AECs fault detection predictive maintenance signal processing techniques feature engineering linear regression and K-nearest neighbors
在线阅读 下载PDF
Extended linear regression model for vessel trajectory prediction with a-priori AIS information
5
作者 Christiaan Neil Burger Waldo Kleynhans Trienko Lups Grobler 《Geo-Spatial Information Science》 CSCD 2024年第1期202-220,共19页
As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Au... As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time. 展开更多
关键词 Automatic Identification System(AIS)data linear regression Model(LRM) trajectory mining spatial map historic data trajectory prediction
原文传递
Influencing Factors of Museum Self-Improvement in China: A Multiple Linear Regression Analysis
6
作者 Zhenjing Gu Da Meng +1 位作者 Hui Yang Xiaofei Liu 《Proceedings of Business and Economic Studies》 2024年第6期238-250,共13页
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for... The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums. 展开更多
关键词 Museum self-improvement Influencing factors Multiple linear regression model
在线阅读 下载PDF
Study on Influencing Factors of Tourism Income in Yantai City Based on Multiple Linear Regression Analysis
7
作者 Yue Guan Meng Tian Li Wang 《Proceedings of Business and Economic Studies》 2024年第6期99-105,共7页
As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enth... As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City. 展开更多
关键词 Tourism income Multiple linear regression Influencing factors Publisher’s note Bio-Byword Scientific
在线阅读 下载PDF
Calculations of rock matrix modulus based on a linear regression relation 被引量:5
8
作者 贺锡雷 贺振华 +2 位作者 汪瑞良 王绪本 蒋炼 《Applied Geophysics》 SCIE CSCD 2011年第3期155-162,239,共9页
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura... The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable. 展开更多
关键词 Bulk modulus rock matrix fluid substitution rock physics linear regression
在线阅读 下载PDF
Study on QSAR of Taxol and its Derivatives Based on Stepwise Multivariate Linear Regression Analysis 被引量:1
9
作者 刘艾林 迟翰林 《Journal of Chinese Pharmaceutical Sciences》 CAS 1997年第1期21-25,共5页
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun... Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities. 展开更多
关键词 TAXOL Stepwise multivariate linear regression (SMLR) Molar refractivity
全文增补中
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:35
10
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
在线阅读 下载PDF
Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables 被引量:28
11
作者 Marla C.Maniquiz Soyoung Lee Lee-Hyung Kim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第6期946-952,共7页
Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calcu... Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models. 展开更多
关键词 event mean concentration (EMC) multiple linear regression model LOAD non-point sources RAINFALL urban runoff
原文传递
Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network(ANN) and multiple linear regressions(MLR) 被引量:8
12
作者 Ali Mohammadi Torkashvand Abbas Ahmadi Niloofar Layegh Nikravesh 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1634-1644,共11页
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s... Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration. 展开更多
关键词 artificial neural network FIRMNESS FRUIT KIWI multiple linear regression NUTRIENT
在线阅读 下载PDF
Isolated Area Load Forecasting using Linear Regression Analysis: Practical Approach 被引量:19
13
作者 M. A. Mahmud 《Energy and Power Engineering》 2011年第4期547-550,共4页
This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through l... This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through linear regression and based on the identification of factors on which electrical load growth depends. To determine the identification factors, areas are selected whose histories of load growth rate known and the load growth deciding factors are similar to those of the isolated area. The proposed analysis is applied to an isolated area of Bangladesh, called Swandip where a past history of electrical load demand is not available and also there is no possibility of connecting the area with the main land grid system. 展开更多
关键词 ISOLATED Area LOAD Forecasting linear regression Analysis (LRA).
暂未订购
FIXED-DESIGN SEMIPARAMETRIC REGRESSION FOR LINEAR TIME SERIES 被引量:8
14
作者 胡舒合 《Acta Mathematica Scientia》 SCIE CSCD 2006年第1期74-82,共9页
This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained u... This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed. 展开更多
关键词 Fixed-design semiparametric regression linear time series
在线阅读 下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:12
15
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
在线阅读 下载PDF
A study of the mixed layer of the South China Sea based on the multiple linear regression 被引量:8
16
作者 DUAN Rui YANG Kunde +1 位作者 MA Yuanliang HU Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期19-31,共13页
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ... Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid. 展开更多
关键词 mixed layer multiple linear regression South China Sea vertical mixing model
在线阅读 下载PDF
A class of estimators of the mean survival time from interval censored data with application to linear regression 被引量:9
17
作者 ZHENG Zu-kang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期377-390,共14页
A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense t... A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given. 展开更多
关键词 interval censored data linear regression
在线阅读 下载PDF
Identification of heavy metal-contaminated Tegillarca granosa using laser-induced breakdown spectroscopy and linear regression for classification 被引量:5
18
作者 Zhonghao XIE Liuwei MENG +6 位作者 Xi'an FENG Xiaojing CHEN Xi CHEN Leiming YUAN Wen SHI Guangzao HUANG Ming YI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期151-159,共9页
Tegillarca granosa(T.granosa)is susceptible to heavy metals,which may pose a threat to consumer health.Thus,healthy and polluted T.granosa should be distinguished quickly.This study aimed to rapidly identify heavy met... Tegillarca granosa(T.granosa)is susceptible to heavy metals,which may pose a threat to consumer health.Thus,healthy and polluted T.granosa should be distinguished quickly.This study aimed to rapidly identify heavy metal pollution by using laser-induced breakdown spectroscopy(LIBS)coupled with linear regression classification(LRC).Five types of T.granosa were studied,namely,Cd-,Zn-,Pb-contaminated,mixed contaminated,and control samples.Threshold method was applied to extract the significant variables from LIBS spectra.Then,LRC was used to classify the different types of T.granosa.Other classification models and feature selection methods were used for comparison.LRC was the best model,achieving an accuracy of 90.67%.Results indicated that LIBS combined with LRC is effective and feasible for T.granosa heavy metal detection. 展开更多
关键词 SHELLFISH LASER-INDUCED BREAKDOWN SPECTROMETRY HEAVY metal linear regression CLASSIFICATION
在线阅读 下载PDF
Predicting the Acute Toxicity of Aromatic Amines by Linear and Nonlinear Regression Methods 被引量:5
19
作者 张晓龙 周志祥 +3 位作者 刘阳华 范雪兰 李捍东 王建涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第2期244-252,共9页
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ... In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness. 展开更多
关键词 aromatic amines acute toxicity quantitative structure-activity relationship(QSAR) support vector machine (SVM) multiple linear regression (MLR)
暂未订购
Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration 被引量:2
20
作者 Jing Ke Hanfei Dou +3 位作者 Ximin Zhang Dushimabararezi Serge Uhagaze Xiali Ding Yuming Dong 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第6期404-409,共6页
As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in thi... As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments. 展开更多
关键词 Dissociation CONSTANTS ALENDRONATE SODIUM Distribution curve Piecewise linear regression ACID-BASE POTENTIOMETRIC TITRATION
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部