期刊文献+
共找到2,499篇文章
< 1 2 125 >
每页显示 20 50 100
GENOME:Genetic Encoding for Novel Optimization of Malware Detection and Classification in Edge Computing
1
作者 Sang-Hoon Choi Ki-Woong Park 《Computers, Materials & Continua》 2025年第3期4021-4039,共19页
The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing pr... The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing presents substantial security challenges,rendering it a prominent target for sophisticated malware attacks.Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources.This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation(GENOME)framework,a novel solution that is intended to improve the performance of malware detection and classification in peripheral computing environments.GENOME optimizes data storage and computa-tional efficiency by converting malware artifacts into compact,structured sequences through a Deoxyribonucleic Acid(DNA)encoding mechanism.The framework employs two DNA encoding algorithms,standard and compressed,which substantially reduce data size while preserving high detection accuracy.The Edge-IIoTset dataset was used to conduct experiments that showed that GENOME was able to achieve high classification performance using models such as Random Forest and Logistic Regression,resulting in a reduction of data size by up to 42%.Further evaluations with the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse datasets and algorithms.The potential of GENOME to address critical challenges,such as the rapid mutation of malware,real-time processing demands,and resource limitations,is emphasized in this study.GENOME offers comprehensive protection for peripheral computing environments by offering a security solution that is both efficient and scalable. 展开更多
关键词 Edge computing IoT security MALWARE machine learning malware classification malware detection
在线阅读 下载PDF
Detection and Classification of Fig Plant Leaf Diseases Using Convolution Neural Network
2
作者 Rahim Khan Ihsan Rabbi +2 位作者 Umar Farooq Jawad Khan Fahad Alturise 《Computers, Materials & Continua》 2025年第7期827-842,共16页
Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accu... Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices. 展开更多
关键词 Fig tree leaf diseases deep learning convolutional neural network disease detection and classification agriculture technology
在线阅读 下载PDF
A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning Models
3
作者 Samia Allaoua Chelloug 《Computers, Materials & Continua》 SCIE EI 2024年第6期4845-4861,共17页
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr... Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness. 展开更多
关键词 Intrusion detection multi classification deep learning STACKING NSL-KDD
在线阅读 下载PDF
A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging
4
作者 K.Umapathi S.Shobana +5 位作者 Anand Nayyar Judith Justin R.Vanithamani Miguel Villagómez Galindo Mushtaq Ahmad Ansari Hitesh Panchal 《Computers, Materials & Continua》 SCIE EI 2024年第5期1875-1901,共27页
Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effectivetreatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of ... Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effectivetreatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breastcancer fromultrasound images. The primary challenge is accurately distinguishing between malignant and benigntumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentationand classification. The main objective of the research paper is to develop an advanced methodology for breastultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, andmachine learning-based classification. A unique approach is introduced that combines Enhanced Speckle ReducedAnisotropic Diffusion (SRAD) filters for speckle noise reduction, U-NET-based segmentation, Genetic Algorithm(GA)-based feature selection, and Random Forest and Bagging Tree classifiers, resulting in a novel and efficientmodel. To test and validate the hybrid model, rigorous experimentations were performed and results state thatthe proposed hybrid model achieved accuracy rate of 99.9%, outperforming other existing techniques, and alsosignificantly reducing computational time. This enhanced accuracy, along with improved sensitivity and specificity,makes the proposed hybrid model a valuable addition to CAD systems in breast cancer diagnosis, ultimatelyenhancing diagnostic accuracy in clinical applications. 展开更多
关键词 Ultrasound images breast cancer tumor classification SEGMENTATION deep learning lesion detection
暂未订购
A genetic programming approach with adaptive region detection to skin cancer image classification
5
作者 Kunjie Yu Jintao Lian +3 位作者 Ying Bi Jing Liang Bing Xue Mengjie Zhang 《Journal of Automation and Intelligence》 2024年第4期240-249,共10页
Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing... Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing skin cancer image classification methods have certain limitations,such as poor interpretability,the requirement of domain knowledge for feature extraction,and the neglect of lesion area information in skin images.This paper proposes a new genetic programming(GP)approach to automatically learn global and/or local features from skin images for classification.To achieve this,a new function set and a new terminal set have been developed.The proposed GP method can automatically and flexibly extract effective local/global features from different types of input images,thus providing a comprehensive description of skin images.A new region detection function has been developed to select the lesion areas from skin images for feature extraction.The performance of this approach is evaluated on three skin cancer image classification tasks,and compared with three GP methods and six non-GP methods.The experimental results show that the new approach achieves significantly better or similar performance in most cases.Further analysis validates the effectiveness of our parameter settings,visualizes the multiple region detection functions used in the individual evolved by the proposed approach,and demonstrates its good convergence ability. 展开更多
关键词 Genetic programming Skin cancer image classification Region detection Feature extraction
在线阅读 下载PDF
Enhancing cyber threat detection with an improved artificial neural network model 被引量:1
6
作者 Toluwase Sunday Oyinloye Micheal Olaolu Arowolo Rajesh Prasad 《Data Science and Management》 2025年第1期107-115,共9页
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injec... Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method. 展开更多
关键词 CYBERSECURITY Intrusion detection Deep learning Artificial neural network Imbalanced data classification
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
7
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
8
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
暂未订购
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
9
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
A Real-Time Detection Method for Fashion Necklines Based on Deep Learning
10
作者 CHEN Caixia JIANG Linxin 《Journal of Donghua University(English Edition)》 2025年第3期301-314,共14页
Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence ... Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection.To address this problem,this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO).First,the proposed model incorporates a BiFormer attention mechanism into the backbone,enhancing its feature extraction capability.Second,a lightweight multi-level asymmetry detector head(LADH)is designed to replace the original head,effectively reducing the computational complexity and accelerating the detection speed.Last,the original loss function is replaced with Wise-IoU,which improves the localization accuracy of the detection box.The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP)of 81.7%,showing an absolute improvement of 3.9%over the original YOLOv8 model,and a detection speed of 215.6 frame/s,confirming its suitability for real-time applications in fashion neckline detection. 展开更多
关键词 fashion neckline detection deep learning detection and classification real time YOLOv8
在线阅读 下载PDF
Which is more faithful,seeing or saying? Multimodal sarcasm detection exploiting contrasting sentiment knowledge
11
作者 Yutao Chen Shumin Shi Heyan Huang 《CAAI Transactions on Intelligence Technology》 2025年第2期375-386,共12页
Using sarcasm on social media platforms to express negative opinions towards a person or object has become increasingly common.However,detecting sarcasm in various forms of communication can be difficult due to confli... Using sarcasm on social media platforms to express negative opinions towards a person or object has become increasingly common.However,detecting sarcasm in various forms of communication can be difficult due to conflicting sentiments.In this paper,we introduce a contrasting sentiment-based model for multimodal sarcasm detection(CS4MSD),which identifies inconsistent emotions by leveraging the CLIP knowledge module to produce sentiment features in both text and image.Then,five external sentiments are introduced to prompt the model learning sentimental preferences among modalities.Furthermore,we highlight the importance of verbal descriptions embedded in illustrations and incorporate additional knowledge-sharing modules to fuse such imagelike features.Experimental results demonstrate that our model achieves state-of-the-art performance on the public multimodal sarcasm dataset. 展开更多
关键词 CLIP image-text classification knowledge fusion multi-modal sarcasm detection
在线阅读 下载PDF
PNSS: Unknown Face Presentation Attack Detection with Pseudo Negative Sample Synthesis
12
作者 Hongyang Wang Yichen Shi +2 位作者 Jun Feng Zitong Yu Zhuofu Tao 《Computers, Materials & Continua》 2025年第5期3097-3112,共16页
Face Presentation Attack Detection(fPAD)plays a vital role in securing face recognition systems against various presentation attacks.While supervised learning-based methods demonstrate effectiveness,they are prone to ... Face Presentation Attack Detection(fPAD)plays a vital role in securing face recognition systems against various presentation attacks.While supervised learning-based methods demonstrate effectiveness,they are prone to overfitting to known attack types and struggle to generalize to novel attack scenarios.Recent studies have explored formulating fPAD as an anomaly detection problem or one-class classification task,enabling the training of generalized models for unknown attack detection.However,conventional anomaly detection approaches encounter difficulties in precisely delineating the boundary between bonafide samples and unknown attacks.To address this challenge,we propose a novel framework focusing on unknown attack detection using exclusively bonafide facial data during training.The core innovation lies in our pseudo-negative sample synthesis(PNSS)strategy,which facilitates learning of compact decision boundaries between bonafide faces and potential attack variations.Specifically,PNSS generates synthetic negative samples within low-likelihood regions of the bonafide feature space to represent diverse unknown attack patterns.To overcome the inherent imbalance between positive and synthetic negative samples during iterative training,we implement a dual-loss mechanism combining focal loss for classification optimization with pairwise confusion loss as a regularizer.This architecture effectively mitigates model bias towards bonafide samples while maintaining discriminative power.Comprehensive evaluations across three benchmark datasets validate the framework’s superior performance.Notably,our PNSS achieves 8%–18% average classification error rate(ACER)reduction compared with state-of-the-art one-class fPAD methods in cross-dataset evaluations on Idiap Replay-Attack and MSU-MFSD datasets. 展开更多
关键词 Face presentation attack detection pseudo negative sample anomaly detection one-class classification
在线阅读 下载PDF
MAD-ANET:Malware Detection Using Attention-Based Deep Neural Networks
13
作者 Waleed Khalid Al-Ghanem Emad Ul Haq Qazi +3 位作者 Tanveer Zia Muhammad Hamza Faheem Muhammad Imran Iftikhar Ahmad 《Computer Modeling in Engineering & Sciences》 2025年第4期1009-1027,共19页
In the current digital era,new technologies are becoming an essential part of our lives.Consequently,the number ofmalicious software ormalware attacks is rapidly growing.There is no doubt,themajority ofmalware attacks... In the current digital era,new technologies are becoming an essential part of our lives.Consequently,the number ofmalicious software ormalware attacks is rapidly growing.There is no doubt,themajority ofmalware attacks can be detected by most antivirus programs.However,such types of antivirus programs are one step behind malicious software.Due to these dilemmas,deep learning become popular in the detection and classification of malicious data.Therefore,researchers have significantly focused on finding solutions for malware attacks by analyzing malicious samples with the help of different techniques and models.In this research,we presented a lightweight attention-based novel deep Convolutional Neural Network(DNN-CNN)model for binary and multi-class malware classification,including benign,trojan horse,ransomware,and spyware.We applied the Principal Component Analysis(PCA)technique for feature extraction for binary classification.We used the Synthetic Minority Oversampling Technique(SMOTE)to handle the imbalanced data during multi-class classification.Our proposed attention-based malware detectionmodel is trained on the benchmarkmalware memory dataset named CIC-MalMem-2022.Theresults indicate that our model obtained high accuracy for binary and multi-class classification,99.5% and 97.9%,respectively. 展开更多
关键词 Attention-based CNN malware detection machine learning deep learning classification
在线阅读 下载PDF
YOLOCSP-PEST for Crops Pest Localization and Classification
14
作者 Farooq Ali Huma Qayyum +2 位作者 Kashif Saleem Iftikhar Ahmad Muhammad Javed Iqbal 《Computers, Materials & Continua》 2025年第2期2373-2388,共16页
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome... Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time. 展开更多
关键词 Deep learning classification of pests YOLOCSP-PEST pest detection
在线阅读 下载PDF
Application of deep learning models in the pathological classification and staging of esophageal cancer:A focus on Wave-Vision Transformer
15
作者 Wei Wei Xiao-Lei Zhang +4 位作者 Hong-Zhen Wang Lin-Lin Wang Jing-Li Wen Xin Han Qian Liu 《World Journal of Gastroenterology》 2025年第19期68-85,共18页
BACKGROUND Esophageal cancer is the sixth most common cancer worldwide,with a high mortality rate.Early prognosis of esophageal abnormalities can improve patient survival rates.The progression of esophageal cancer fol... BACKGROUND Esophageal cancer is the sixth most common cancer worldwide,with a high mortality rate.Early prognosis of esophageal abnormalities can improve patient survival rates.The progression of esophageal cancer follows a sequence from esophagitis to non-dysplastic Barrett’s esophagus,dysplastic Barrett’s esophagus,and eventually esophageal adenocarcinoma(EAC).This study explored the application of deep learning technology in the precise diagnosis of pathological classification and staging of EAC to enhance diagnostic accuracy and efficiency.AIM To explore the application of deep learning models,particularly Wave-Vision Transformer(Wave-ViT),in the pathological classification and staging of esophageal cancer to enhance diagnostic accuracy and efficiency.METHODS We applied several deep learning models,including multi-layer perceptron,residual network,transformer,and Wave-ViT,to a dataset of clinically validated esophageal pathology images.The models were trained to identify pathological features and assist in the classification and staging of different stages of esophageal cancer.The models were compared based on accuracy,computational complexity,and efficiency.RESULTS The Wave-ViT model demonstrated the highest accuracy at 88.97%,surpassing the transformer(87.65%),residual network(85.44%),and multi-layer perceptron(81.17%).Additionally,Wave-ViT exhibited low computational complexity with significantly reduced parameter size,making it highly efficient for real-time clinical applications.CONCLUSION Deep learning technology,particularly the Frequency-Domain Transformer model,shows promise in improving the precision of pathological classification and staging of EAC.The application of the Frequency-Domain Transformer model enhances the automation of the diagnostic process and may support early detection and treatment of EAC.Future research may further explore the potential of this model in broader medical image analysis applications,particularly in the field of precision medicine. 展开更多
关键词 Esophageal cancer Deep learning Wave-Vision Transformer Pathological classification STAGING Early detection
暂未订购
Self-AttentionNeXt:Exploring schizophrenic optical coherence tomography image detection investigations
16
作者 Mehmet Kaan Kaya Sermal Arslan +5 位作者 Suheda Kaya Gulay Tasci Burak Tasci Filiz Ozsoy Sengul Dogan Turker Tuncer 《World Journal of Psychiatry》 2025年第9期210-226,共17页
BACKGROUND Optical coherence tomography(OCT)enables high-resolution,non-invasive visualization of retinal structures.Recent evidence suggests that retinal layer alterations may reflect central nervous system changes a... BACKGROUND Optical coherence tomography(OCT)enables high-resolution,non-invasive visualization of retinal structures.Recent evidence suggests that retinal layer alterations may reflect central nervous system changes associated with psychiatric disorders such as schizophrenia(SZ).AIM To develop an advanced deep learning model to classify OCT images and distinguish patients with SZ from healthy controls using retinal biomarkers.METHODS A novel convolutional neural network,Self-AttentionNeXt,was designed by integrating grouped self-attention mechanisms,residual and inverted bottleneck blocks,and a final 1×1 convolution for feature refinement.The model was trained and tested on both a custom OCT dataset collected from patients with SZ and a publicly available OCT dataset(OCT2017).RESULTS Self-AttentionNeXt achieved 97.0%accuracy on the collected SZ OCT dataset and over 95%accuracy on the public OCT2017 dataset.Gradient-weighted class activation mapping visualizations confirmed the model’s attention to clinically relevant retinal regions,suggesting effective feature localization.CONCLUSION Self-AttentionNeXt effectively combines transformer-inspired attention mechanisms with convolutional neural networks architecture to support the early and accurate detection of SZ using OCT images.This approach offers a promising direction for artificial intelligence-assisted psychiatric diagnostics and clinical decision support. 展开更多
关键词 Self-AttentionNeXt Optical coherence tomography image classification Schizophrenia detection Biomedical image classification Deep learning in ophthalmology Retinal imaging biomarkers
暂未订购
Stellar flare detection methods in TESS data:application and performance study
17
作者 Min Li Liang Wang +4 位作者 Zhiqiang Zou Ali Luo Bo Qiu Peng Jia Ying Shan 《Astronomical Techniques and Instruments》 2025年第5期310-318,共9页
The detection of stellar flares is crucial to understanding dynamic processes at the stellar surface and their potential impact on surrounding exoplanetary systems.Extensive time series data acquired by the Transiting... The detection of stellar flares is crucial to understanding dynamic processes at the stellar surface and their potential impact on surrounding exoplanetary systems.Extensive time series data acquired by the Transiting Exoplanet Survey Satellite(TESS)offer valuable opportunities for large-scale flare studies.A variety of methods is currently employed for flare detection,with machine learning(ML)approaches demonstrating strong potential for automated classification tasks,particularly for the analysis of astronomical time series.This review provides an overview of the methods used to detect stellar flares in TESS data and evaluates their performance and effectiveness.It includes our assessment of both traditional detection techniques and more recent methods,such as ML algorithms,highlighting their strengths and limitations.By addressing current challenges and identifying promising approaches,this manuscript aims to support further studies and promote the development of stellar flare research. 展开更多
关键词 Stellar flare detection TESS light curve ML Automatic classification
在线阅读 下载PDF
DMF: A Deep Multimodal Fusion-Based Network Traffic Classification Model
18
作者 Xiangbin Wang Qingjun Yuan +3 位作者 Weina Niu Qianwei Meng Yongjuan Wang Chunxiang Gu 《Computers, Materials & Continua》 2025年第5期2267-2285,共19页
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods... With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods. 展开更多
关键词 Deep fusion intrusion detection multimodal learning network traffic classification
在线阅读 下载PDF
E-GlauNet: A CNN-Based Ensemble Deep Learning Model for Glaucoma Detection and Staging Using Retinal Fundus Images
19
作者 Maheen Anwar Saima Farhan +4 位作者 Yasin Ul Haq Waqar Azeem Muhammad Ilyas Razvan Cristian Voicu Muhammad Hassan Tanveer 《Computers, Materials & Continua》 2025年第8期3477-3502,共26页
Glaucoma,a chronic eye disease affecting millions worldwide,poses a substantial threat to eyesight and can result in permanent vision loss if left untreated.Manual identification of glaucoma is a complicated and time-... Glaucoma,a chronic eye disease affecting millions worldwide,poses a substantial threat to eyesight and can result in permanent vision loss if left untreated.Manual identification of glaucoma is a complicated and time-consuming practice requiring specialized expertise and results may be subjective.To address these challenges,this research proposes a computer-aided diagnosis(CAD)approach using Artificial Intelligence(AI)techniques for binary and multiclass classification of glaucoma stages.An ensemble fusion mechanism that combines the outputs of three pre-trained convolutional neural network(ConvNet)models–ResNet-50,VGG-16,and InceptionV3 is utilized in this paper.This fusion technique enhances diagnostic accuracy and robustness by ensemble-averaging the predictions from individual models,leveraging their complementary strengths.The objective of this work is to assess the model’s capability for early-stage glaucoma diagnosis.Classification is performed on a dataset collected from the Harvard Dataverse repository.With the proposed technique,for Normal vs.Advanced glaucoma classification,a validation accuracy of 98.04%and testing accuracy of 98.03%is achieved,with a specificity of 100%which outperforms stateof-the-art methods.For multiclass classification,the suggested ensemble approach achieved a precision and sensitivity of 97%,specificity,and testing accuracy of 98.57%and 96.82%,respectively.The proposed E-GlauNet model has significant potential in assisting ophthalmologists in the screening and fast diagnosis of glaucoma,leading to more reliable,efficient,and timely diagnosis,particularly for early-stage detection and staging of the disease.While the proposed method demonstrates high accuracy and robustness,the study is limited by the evaluation of a single dataset.Future work will focus on external validation across diverse datasets and enhancing interpretability using explainable AI techniques. 展开更多
关键词 classification deep learning early disease detection ensemble learning GLAUCOMA machine learning retinal fundus images
暂未订购
Leveraging the WFD2020 Dataset for Multi-Class Detection of Wheat Fungal Diseases with YOLOv8 and Faster R-CNN
20
作者 Shivani Sood Harjeet Singh +1 位作者 Surbhi Bhatia Khan Ahlam Almusharraf 《Computers, Materials & Continua》 2025年第8期2751-2787,共37页
Wheat fungal infections pose a danger to the grain quality and crop productivity.Thus,prompt and precise diagnosis is essential for efficient crop management.This study used the WFD2020 image dataset,which is availabl... Wheat fungal infections pose a danger to the grain quality and crop productivity.Thus,prompt and precise diagnosis is essential for efficient crop management.This study used the WFD2020 image dataset,which is available to everyone,to look into howdeep learningmodels could be used to find powdery mildew,leaf rust,and yellow rust,which are three common fungal diseases in Punjab,India.We changed a few hyperparameters to test TensorFlowbased models,such as SSD and Faster R-CNN with ResNet50,ResNet101,and ResNet152 as backbones.Faster R-CNN with ResNet50 achieved amean average precision(mAP)of 0.68 among these models.We then used the PyTorch-based YOLOv8 model,which significantly outperformed the previous methods with an impressive mAP of 0.99.YOLOv8 proved to be a beneficial approach for the early-stage diagnosis of fungal diseases,especially when it comes to precisely identifying diseased areas and various object sizes in images.Problems,such as class imbalance and possible model overfitting,persisted despite these developments.The results show that YOLOv8 is a good automated disease diagnosis tool that helps farmers quickly find and treat fungal infections using image-based systems. 展开更多
关键词 Wheat crop detection and classification fungal disease rust diseases Faster R-CNN deep learning computer vision precision agriculture
在线阅读 下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部