期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Step-Based Deep Learning Approach for Network Intrusion Detection
1
作者 Yanyan Zhang Xiangjin Ran 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1231-1245,共15页
In the network security field,the network intrusion detection system(NIDS)is considered one of the critical issues in the detection accuracy andmissed detection rate.In this paper,amethod of two-step network intrusion... In the network security field,the network intrusion detection system(NIDS)is considered one of the critical issues in the detection accuracy andmissed detection rate.In this paper,amethod of two-step network intrusion detection on the basis of GoogLeNet Inception and deep convolutional neural networks(CNNs)models is proposed.The proposed method used the GoogLeNet Inception model to identify the network packets’binary problem.Subsequently,the characteristics of the packets’raw data and the traffic features are extracted.The CNNs model is also used to identify the multiclass intrusions by the network packets’features.In the experimental results,the proposed method shows an improvement in the identification accuracy,where it achieves up to 99.63%.In addition,the missed detection rate is reduced to be 0.1%.The results prove the high performance of the proposed method in enhancing the NIDS’s reliability. 展开更多
关键词 Network intrusion detection system deep convolutional neural networks GoogLeNet Inception model step-based intrusion detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部