Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs...Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats. Results: Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection. Conclusions: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.展开更多
[ Objective ] The paper was to explore the relationship between character of rice stem and compressive strength. [ Method] The morphological and anatomical characters of stems of 10 rice varieties (including 3 intern...[ Objective ] The paper was to explore the relationship between character of rice stem and compressive strength. [ Method] The morphological and anatomical characters of stems of 10 rice varieties (including 3 internedes) were systematically studied by paraffin sectioning technology; the digital force tester was used to measure the compressive strengths of various varieties; the correlation between various characters and stem compressive strengths was analyzed. [ Result ] Correlation analysis showed that the outer diameter and cress-sectional area of stem had clese relation with longing resistance of stem, which could be adopted as the important factors for stem lodging resistance. The outer diameter and cross-sectional area of 63 Liangyou 636 was significantly higher than other tested varieties, 3 intemedes all had high comoressive strength, and the vleld was also high. [Conclusion] 63 Liangyou 636 could be used as the rice cultivar with super yield.展开更多
Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its i...Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its isolation procedure and the osteogenic differentiation potential. The aims of this study are to establish the procurement procedure of human amniotic membrane, the isolation and culture of hAMSC, the MSC phenotypic characterization, and the in vitro osteogenic differentiation of hAMSC. Results of the study are as follows. The quality of human amniotic membrane would be best if procured from Caesarean operation under highly aseptic condition to avoid fungal and bacterial contamination on the culture. Isolation procedure using modified Soncini protocol yielded large amount of MSC with high proliferative capacity in culture medium. Characterization of hAMSC showed that the majority of the target cells exhibited specific MSC markers (CD105 and CD90) with a small number of these cells expressing CD45, the marker of hematopoeitic cells. The in vitro osteogenic differentiation of hAMSC followed by Alizarin Red staining showed that osteoblastic differentiation was detected in a significantly high number of cells. This study concludes that hAMSCs isolated from human amniotic membrane have the capacity for in vitro osteogenesis which makes them be one of the potential allogeneic stem cells for application in maxillofacial bone reconstruction.展开更多
The human umbilical cord is a source of numerous Mesenchymal Stem Cells (MSCs), making it as a potential source of allogeneic multipotent cell for bone tissue engineering. The aims of this study were to find: 1) Human...The human umbilical cord is a source of numerous Mesenchymal Stem Cells (MSCs), making it as a potential source of allogeneic multipotent cell for bone tissue engineering. The aims of this study were to find: 1) Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) phenotypic characterization, 2) The in-vitro osteogenic differentiation potential of hUCMSCs, 3) The cytotoxicity of gelatin solvent to hUCMSCs using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. As a result, through characterization of hUCMSCs, the majority of target cells expressed specific MSCs markers, Cellular Differentiation (CD)73, smaller number of subpopulation expressed CD90 with only minimal subpopulation expressed CD105 and all negative MSCs markers. Osteoblastic differentiation was found in a significantly high number of cells when in vitro osteogenic differentiation of hUCMSCs with Alizarin Red staining was done. Biocompatibility analysis using the MTT assay showed that gelatin solvent and Alpha modification of minimum essential medium Eagle (α-MEM) was non-toxic for hUCMSCs in vitro. The study concluded that hUCMSCs isolated from human umbilical cord was capable of undergoing in vitro osteogenesis, indicating its potential as allogeneic stem cells for clinical application in bone tissue engineering.展开更多
基金funded by Majlis Amanah Rakyat (Malaysia) throughout the duration of this studyfunded by Jastro Shields Research Fellowship and USDA-CREES W2171 Regional Research Project
文摘Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats. Results: Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection. Conclusions: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.
基金Supported by National Natural Science Foundation of China (31100240)
文摘[ Objective ] The paper was to explore the relationship between character of rice stem and compressive strength. [ Method] The morphological and anatomical characters of stems of 10 rice varieties (including 3 internedes) were systematically studied by paraffin sectioning technology; the digital force tester was used to measure the compressive strengths of various varieties; the correlation between various characters and stem compressive strengths was analyzed. [ Result ] Correlation analysis showed that the outer diameter and cress-sectional area of stem had clese relation with longing resistance of stem, which could be adopted as the important factors for stem lodging resistance. The outer diameter and cross-sectional area of 63 Liangyou 636 was significantly higher than other tested varieties, 3 intemedes all had high comoressive strength, and the vleld was also high. [Conclusion] 63 Liangyou 636 could be used as the rice cultivar with super yield.
文摘Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its isolation procedure and the osteogenic differentiation potential. The aims of this study are to establish the procurement procedure of human amniotic membrane, the isolation and culture of hAMSC, the MSC phenotypic characterization, and the in vitro osteogenic differentiation of hAMSC. Results of the study are as follows. The quality of human amniotic membrane would be best if procured from Caesarean operation under highly aseptic condition to avoid fungal and bacterial contamination on the culture. Isolation procedure using modified Soncini protocol yielded large amount of MSC with high proliferative capacity in culture medium. Characterization of hAMSC showed that the majority of the target cells exhibited specific MSC markers (CD105 and CD90) with a small number of these cells expressing CD45, the marker of hematopoeitic cells. The in vitro osteogenic differentiation of hAMSC followed by Alizarin Red staining showed that osteoblastic differentiation was detected in a significantly high number of cells. This study concludes that hAMSCs isolated from human amniotic membrane have the capacity for in vitro osteogenesis which makes them be one of the potential allogeneic stem cells for application in maxillofacial bone reconstruction.
文摘The human umbilical cord is a source of numerous Mesenchymal Stem Cells (MSCs), making it as a potential source of allogeneic multipotent cell for bone tissue engineering. The aims of this study were to find: 1) Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) phenotypic characterization, 2) The in-vitro osteogenic differentiation potential of hUCMSCs, 3) The cytotoxicity of gelatin solvent to hUCMSCs using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. As a result, through characterization of hUCMSCs, the majority of target cells expressed specific MSCs markers, Cellular Differentiation (CD)73, smaller number of subpopulation expressed CD90 with only minimal subpopulation expressed CD105 and all negative MSCs markers. Osteoblastic differentiation was found in a significantly high number of cells when in vitro osteogenic differentiation of hUCMSCs with Alizarin Red staining was done. Biocompatibility analysis using the MTT assay showed that gelatin solvent and Alpha modification of minimum essential medium Eagle (α-MEM) was non-toxic for hUCMSCs in vitro. The study concluded that hUCMSCs isolated from human umbilical cord was capable of undergoing in vitro osteogenesis, indicating its potential as allogeneic stem cells for clinical application in bone tissue engineering.