Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various ne...Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various neurological diseases,igniting interest in its applicability for epilepsy treatment.This comprehensive review summarizes different therapeutic approaches utilizing various types of stem cells.Preclinical experiments have explored the use and potential therapeutic effects of mesenchymal stem cells,including genetically modified variants.Clinical trials involving patientderived mesenchymal stem cells have shown promising results,with reductions in the frequency of epileptic seizures and improvements in neurological,cognitive,and motor functions reported.Another promising therapeutic strategy involves neural stem cells.These cells can be cultured outside the body and directed to differentiate into specific cell types.The transplant of neural stem cells has the potential to replace lost inhibitory interneurons,providing a novel treatment avenue for epilepsy.Embryonic stem cells are characterized by their significant capacity for self-renewal and their ability to differentiate into any type of somatic cell.In epilepsy treatment,embryonic stem cells can serve three primary functions:neuron regeneration,the maintenance of cellular homeostasis,and restorative activity.One notable strategy involves differentiating embryonic stem cells intoγ-aminobutyric acidergic neurons for transplantation into lesion sites.This approach is currently undergoing clinical trials and could be a breakthrough in the treatment of refractory epilepsy.Induced pluripotent stem cells share the same genetic background as the donor,thereby reducing the risk of immune rejection and addressing ethical concerns.However,research on induced pluripotent stem cell therapy remains in the preclinical stage.Despite the promise of stem cell therapies for epilepsy,several limitations must be addressed.Safety concerns persist,including issues such as tumor formation,and the low survival rate of transplanted cells remains a significant challenge.Additionally,the high cost of these treatments may be prohibitive for some patients.In summary,stem cell therapy shows considerable promise in managing epilepsy,but further research is needed to overcome its existing limitations and enhance its clinical applicability.展开更多
Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within t...Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within the ischemic brain,these mechanisms are often insufficient to restore neuronal functionality.This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events,with focus on the impact of stem cell-based therapies on neural stem cells.Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-tocell contact and through the secretion of growth factors and exosomes.Additionally,implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called“biobridges.”Furthermore,xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects,thereby supporting endogenous neuroregeneration.Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment,we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types.These approaches include:(1)co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis;(2)synergistic administration of stem cells and their exosomes to amplify paracrine effects;and(3)integration of stem cells within hydrogels,which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits.This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.展开更多
BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchym...BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchymal stem cells(MSCs)regulating hematopoiesis in bone marrow(BM).In 2013,the study reported the existence in the synovium of a MSC subset,co-expressing CD73 and CD39,with greater osteo-chondrogenic potency and ability to produce adenosine.This subset expressed CD146,known to be associated with pericytes.AIM To investigate the presence and characterization of the CD73+CD39+CD146+MSC subset in BM.Furthermore,we explored the existence of this subset in mobilized blood.METHODS BM cells were culture expanded up to passage 4.Flow cytometry was used to verify expression of CD73,CD39,and CD146 markers.Cell sorting was performed via BDFACS AriaTM Fusion.The subset was assessed for defined MSC characteristics and perivascular localization in BM sections.Peripheral blood derived MSCs were obtained through apheresis performed at Gift of Life under Institutional Review Board donor consent.RESULTS Our findings demonstrated that the combination of CD73,CD39,and CD146 enabled the identification and purification of a subset of MSCs from culture-expanded BM,up to passage 4.This subset exhibited a CD45-CD73+CD39+CD146+phenotype,along with self-renewal and multipotency abilities,and was located in perivascular areas of BM sections.Additionally,this subset was found in both single and dual-mobilized leukopaks.CONCLUSION The CD73+CD39+CD146+cell subset showed self-renewal and multipotency abilities and was located in perivascular areas of BM.Such cell subset was also reported in single and dual-mobilized leukopaks.展开更多
Our previous study demonstrated that combined transplantation of bone marrow mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplanta...Our previous study demonstrated that combined transplantation of bone marrow mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplantation of retinal progenitor cells alone.Bone marrow mesenchymal stem cells regulate and interact with various cells in the retinal microenvironment by secreting neurotrophic factors and extracellular vesicles.Small extracellular vesicles derived from bone marrow mesenchymal stem cells,which offer low immunogenicity,minimal tumorigenic risk,and ease of transportation,have been utilized in the treatment of various neurological diseases.These vesicles exhibit various activities,including anti-inflammatory actions,promotion of tissue repair,and immune regulation.Therefore,novel strategies using human retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles may represent an innovation in stem cell therapy for retinal degeneration.In this study,we developed such an approach utilizing retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles to treat retinal degeneration in Royal College of Surgeons rats,a genetic model of retinal degeneration.Our findings revealed that the combination of bone marrow mesenchymal stem cell-derived small extracellular vesicles and retinal progenitor cells significantly improved visual function in these rats.The addition of bone marrow mesenchymal stem cell-derived small extracellular vesicles as adjuvants to stem cell transplantation with retinal progenitor cells enhanced the survival,migration,and differentiation of the exogenous retinal progenitor cells.Concurrently,these small extracellular vesicles inhibited the activation of regional microglia,promoted the migration of transplanted retinal progenitor cells to the inner nuclear layer of the retina,and facilitated their differentiation into photoreceptors and bipolar cells.These findings suggest that bone marrow mesenchymal stem cell-derived small extracellular vesicles potentiate the therapeutic efficacy of retinal progenitor cells in retinal degeneration by promoting their survival and differentiation.展开更多
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i...Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.展开更多
A recently published prospective study marks a breakthrough for congenital olfactory disorders in children.The study provides the first long-term,three-year follow-up data,robustly demonstrating the durable efficacy a...A recently published prospective study marks a breakthrough for congenital olfactory disorders in children.The study provides the first long-term,three-year follow-up data,robustly demonstrating the durable efficacy and safety of autologous nasal epithelial stem cell transplantation.This work reveals immense therapeutic potential for a condition traditionally considered untreatable.However,this milestone achievement also presents new challenges.To translate this pioneering therapy from a single-center success to a global standard,multicenter,controlled clinical trials must be initiated immediately.Only through rigorous validation can we ensure its widespread adoption and ultimately bring hope to millions of children worldwide.展开更多
The global incidence of asthma,a leading respiratory disorder affecting more than 235 million people,has dramatically increased in recent years.Characterized by chronic airway inflammation and an imbalanced response t...The global incidence of asthma,a leading respiratory disorder affecting more than 235 million people,has dramatically increased in recent years.Characterized by chronic airway inflammation and an imbalanced response to airborne irritants,this chronic condition is associated with elevated levels of inflammatory factors and symptoms such as dyspnea,cough,wheezing,and chest tightness.Conventional asthma therapies,such as corticosteroids,long-actingβ-agonists,and antiinflammatory agents,often evoke diverse adverse reactions and fail to reduce symptoms and hospitalization rates over the long term effectively.These limitations have prompted researchers to explore innovative therapeutic strategies,including stem cell-related interventions,offering hope to those afflicted with this incurable disease.In this review,we describe the characteristics of stem cells and critically assess the potential and challenges of stem cell-based therapies to improve disease management and treatment outcomes for asthma and other diseases.展开更多
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic a...Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic analysis of human dental pulp stem cells(HDPSCs)obtained from individuals of various ages.Our findings showed that the expression of NUP62 was decreased in aged HDPSCs.We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo.Conversely,the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs.Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression,we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1.This,in turn,stimulates the transcription of the epigenetic enzyme NSD2.Finally,the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes(HMGA1,HMGA2,and SIRT6).Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.展开更多
Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus eryth...Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus erythematosus.Treatment options include glucocorticoids,immunosuppressive agents and the addition of biologics.Recently,the therapeutic role of mesenchymal stem cells(MSCs)in LN has received extensive attention worldwide.MSCs can suppress autoimmunity,alleviate proteinuria and restore renal function by modulating the functions of various immune cells and reducing the secretion of inflammatory cytokines.Several clinical trials have investigated MSC treatment in LN with promising but sometimes inconsistent outcomes.This review summarizes the sources of MSCs and mechanisms in immunoregulation.Furthermore,it examines clinical trials evaluating the efficacy,safety,and limitations of MSC therapy in LN.By highlighting advances and ongoing challenges,this review underscores the potential of MSCs for LN treatment.More large-scale randomized controlled trials are needed to support the effectiveness of this therapy and pave the way for personalized and combinatorial therapeutic approaches.展开更多
BACKGROUND The incidence of diabetic atherosclerosis(DMA)is increasing worldwide,but its pathogenesis remains incompletely understood.In addition to cardiovascular complications,bladder dysfunction is one of the commo...BACKGROUND The incidence of diabetic atherosclerosis(DMA)is increasing worldwide,but its pathogenesis remains incompletely understood.In addition to cardiovascular complications,bladder dysfunction is one of the common comorbidities associated with DMA but is often refractory to current treatments.AIM To investigate the therapeutic effect of human amniotic fluid stem cell-derived extracellular vesicles(hAFSC-EVs)on the recovery of bladder dysfunction in DMA rats.METHODS Eighty rats were divided into normal control,streptozotocin-induced diabetic rats,diabetic rats subjected to arterial balloon endothelial injury of common iliac artery(DMA),and DMA rats treated with hAFSC-EVs(DMA+hAFSC-EVs).At 4 weeks and 12 weeks after DMA induction,levels of blood glucose,total cholesterol,triglyceride,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,homeostasis model assessment(HOMA)-insulin resistance,and HOMA-βwere measured.Cystometry,common iliac artery wall thickness,and bladder tumor necrosis factor(TNF)-α,interleukin(IL)-6,transforming growth factor(TGF)-β1,Smad3,connective tissue growth factor(CTGF)and fibronectin were also evaluated.RESULTS Bladder weight and blood glucose,triglyceride,HOMA-insulin resistance,common iliac artery intima thickness,voided volume,intercontraction interval,bladder capacity,and mRNA expression of TNF-α,IL-6,TGF-β1,Smad3,CTGF and fibronectin were significantly increased at 4 weeks and 12 weeks after induction,while the HOMA-βlevel decreased at 4 weeks and 12 weeks,and the high-density lipoprotein cholesterol level decreased at 12 weeks.hAFSC-EVs treatment in DMA rats significantly reduced bladder weight and blood glucose,thickness of common iliac arterial intima,voided volume,intercontraction interval and bladder capacity at 4 weeks.The mRNA expression of TNF-α,TGF-β1,and CTGF in DMA rats treated with hAFSC-EVs were significantly decreased at 4 weeks,while the mRNA expressions of IL-6 and Smad3 were significantly decreased 12 weeks.CONCLUSION hAFSC-EVs treatment can help restore DMA-induced bladder dysfunction,which is associated with lowered blood glucose levels,reduced arterial wall thickness,and decreased TNF-α,IL-6,TGF-β1,Smad3,and CTGF expression.展开更多
Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells en...Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells encounter various obstacles,including limited tissue sources,invasive acquisition methods,cellular heterogeneity,purification challenges,cellular senescence,and diminished pluripotency and proliferation over successive passages.In this study,we used induced pluripotent stem cell-derived mesenchymal stem cells,known for their self-renewal capacity,multilineage differentiation potential,and immunomodulatory characteristics.We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury.Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation.Furthermore,the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats.Additionally,our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization.Collectively,our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats,offering promising therapeutic strategies for clinical translation.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors of the digestive system worldwide,the prognosis of patients with advanced GC remains poor.AIM To evaluate the combined expression characteristics...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors of the digestive system worldwide,the prognosis of patients with advanced GC remains poor.AIM To evaluate the combined expression characteristics of cancer stem cell markers CD24 and CD133 in GC pathological tissues,and to explore their association with patients’clinicopathological parameters and postoperative survival outcomes.METHODS A total of 304 GC patients who underwent surgical treatment in our hospital from January 2018 to January 2020 were retrospectively included.Immunohistochemistry was used to detect the protein expression of CD24 and CD133 in tumor tissues,adjacent tissues,and normal gastric mucosa tissues.Based on staining intensity and the proportion of positive cells,expression levels were classified into low and high expression,while clinicopathological parameters were recorded.χ2 test was used to evaluate the correlation between expression and categorical variables,Spearman rank correlation analysis was performed to assess the correlation between the expression intensities of the two markers,and multivariate regression models were applied to identify independent risk factors influencing co-expression.Kaplan-Meier survival curves and Log-rank test were used to compare survival differences among groups with different expression patterns.RESULTS Among the 304 patients,155 cases(50.99%)were CD24 positive,including 91 low-expression and 64 highexpression;133 cases(43.75%)were CD133 positive,including 81 low-expression and 52 high-expression.There were 74 cases(24.34%)with double positivity and 81 cases(26.64%)with double negativity.Compared with tumor tissues,the positive rates of CD24 and CD133 in normal gastric tissues and adjacent tissues were significantly lower(P<0.05).Univariate analysis showed that co-expression of CD24 and CD133 in GC tissues was significantly correlated with tumor size,Lauren classification,T stage,N stage,and vascular invasion(P<0.05),but not with patient age,gender,tumor site,World Health Organization histological classification,or M stage(P>0.05).Further multivariate regression analysis suggested that tumor size,T stage,N stage,and vascular invasion were independent risk factors promoting CD24 and CD133 double positivity.Spearman rank correlation analysis indicated a moderate positive correlation between their expression intensities(r=0.420,P<0.001).During follow-up,29 of 304 patients were lost(loss rate 9.54%);146 deaths occurred.According to expression combination,there were 89 cases of CD24 single positivity(39 deaths),68 cases of CD133 single positivity(31 deaths),81 cases of double negativity(25 deaths),and 66 cases of double positivity(51 deaths).Log-rank test showed significant differences in overall survival among the four groups(χ2=20.89,P<0.001),with CD24+/CD133+group showing the worst prognosis.CONCLUSION CD24 and CD133 exhibit high positive detection rates in GC tissues,and their co-positivity is closely associated with tumor stage progression and significantly indicates unfavorable survival outcomes.The co-expression of CD24/CD133 may reflect higher aggressiveness and metastatic potential of GC,serving as a potential prognostic marker and a direction for targeted therapeutic strategies.However,as this is a single-center retrospective study with limitations such as patient loss to follow-up and sample size,further prospective,multicenter,and mechanistic studies are required to validate its clinical applicability and biological role.展开更多
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they po...Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they possess a broad dividing potential.When the standard treatment proves ineffective,stem cells are typically utilized as a final option.Infections and childhood malignancies are among the significant causes of mortality in the pediatric population.Stem cell therapy has shown a decrease in morbidity and mortality when used in patients with favorable conditions like young age and lack of comorbidities.This review discusses how stem cells are prepared and used in treating pediatric diseases like X-linked agammaglobulinemia,diabetes mellitus,aplastic anemia,infections,and leukemia.Technological advancement has played a significant role in producing more specific stem cells using genetic modification methods like clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9,which produce stem cells that target a particular cell type,e.g.,myocytes and hematopoietic cells,further increasing the effectiveness of the therapy.We address the obstacles faced when conducting research related to stem cells,including ethical and legal issues,which hinder the use of this therapy in some fields.We also indicate recommendations for increasing the efficacy of stem cell therapy in the pediatric population.展开更多
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival a...Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)are considered a promising therapy for various diseases due to their strong potential in regenerative medicine and immunomodulation.The tissue source of MSCs has gained attention...BACKGROUND Mesenchymal stem cells(MSCs)are considered a promising therapy for various diseases due to their strong potential in regenerative medicine and immunomodulation.The tissue source of MSCs has gained attention for its role in influencing their function,accessibility,and readiness for clinical use.AIM To identify the most suitable adipose source for MSC isolation and expansion for further applications.METHODS We isolated MSCs from solid adipose tissue and liposuction aspirates using the enzyme method.The MSCs were examined for their expansion using population doubling time,differentiation capacity using multilineage differentiation induction,surface markers using flow cytometry,and stability of chromosomes using the karyotyping method.Growth factors and cytokines in MSC-conditioned media were analyzed using the Luminex assay.RESULTS MSCs were isolated from solid adipose tissue and lipoaspirates and expanded from passage 0 to passage 2.All adipose-derived MSCs(AD-MSCs)exhibited the typical elongated,spindle-shaped morphology and comparable proliferation rate.They expressed positive surface markers(cluster of differentiation 73[CD73]:>97%,CD90:>98%,and CD105:>95%),and negative markers(<1%).All MSCs expressed similar levels of stemness genes(octamer-binding transcription factor 4,SRY-box 2,Krüppel-like factor,and MYC),colonyforming,and trilineage differentiation potential.Karyotyping analysis revealed normal chromosomal patterns in all samples,except one sample exhibiting a polymorphism(1qh+).Furthermore,the growth factors and cytokines of hepatocyte growth factor,vascular endothelial growth factor A,interleukin 6(IL-6),and IL-8 were detected in all AD-MSC conditioned media;but fibroblast growth factor-2 and keratinocyte growth factor were selectively expressed in conditioned media from solid or lipoaspirate AD-MSCs,respectively.CONCLUSION These findings indicate that AD-MSCs from both adipose sources possess all of the characteristic features of MSCs with source-specific secretome differences,which are suitable for further expansion and various clinical applications.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82471471(to WJ),82471485(to FY)Shaanxi Province Special Support Program for Leading Talents in Scientific and Technological Innovation,No.tzjhjw(to WJ)+1 种基金Shaanxi Key Research and Development Plan Project,No.2023-YBSF-353(to XW)the Joint Fund Project of Innovation Research Institute of Xijing Hospital,No.LHJJ24JH13(to ZS)。
文摘Epilepsy is a serious neurological disorder;however,the effectiveness of current medications is often suboptimal.Recently,stem cell technology has demonstrated remarkable therapeutic potential in addressing various neurological diseases,igniting interest in its applicability for epilepsy treatment.This comprehensive review summarizes different therapeutic approaches utilizing various types of stem cells.Preclinical experiments have explored the use and potential therapeutic effects of mesenchymal stem cells,including genetically modified variants.Clinical trials involving patientderived mesenchymal stem cells have shown promising results,with reductions in the frequency of epileptic seizures and improvements in neurological,cognitive,and motor functions reported.Another promising therapeutic strategy involves neural stem cells.These cells can be cultured outside the body and directed to differentiate into specific cell types.The transplant of neural stem cells has the potential to replace lost inhibitory interneurons,providing a novel treatment avenue for epilepsy.Embryonic stem cells are characterized by their significant capacity for self-renewal and their ability to differentiate into any type of somatic cell.In epilepsy treatment,embryonic stem cells can serve three primary functions:neuron regeneration,the maintenance of cellular homeostasis,and restorative activity.One notable strategy involves differentiating embryonic stem cells intoγ-aminobutyric acidergic neurons for transplantation into lesion sites.This approach is currently undergoing clinical trials and could be a breakthrough in the treatment of refractory epilepsy.Induced pluripotent stem cells share the same genetic background as the donor,thereby reducing the risk of immune rejection and addressing ethical concerns.However,research on induced pluripotent stem cell therapy remains in the preclinical stage.Despite the promise of stem cell therapies for epilepsy,several limitations must be addressed.Safety concerns persist,including issues such as tumor formation,and the low survival rate of transplanted cells remains a significant challenge.Additionally,the high cost of these treatments may be prohibitive for some patients.In summary,stem cell therapy shows considerable promise in managing epilepsy,but further research is needed to overcome its existing limitations and enhance its clinical applicability.
基金supported by the National Key Research and Development Program of China,No.2018YFA0108602the CAMS Initiative for Innovative Medicine,No.2021-1-I2M-019National High-Level Hospital Clinical Research Funding,No.2022-PUMCH-C-042(all to XB)。
文摘Ischemic stroke is a significant global health crisis,frequently resulting in disability or death,with limited therapeutic interventions available.Although various intrinsic reparative processes are initiated within the ischemic brain,these mechanisms are often insufficient to restore neuronal functionality.This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events,with focus on the impact of stem cell-based therapies on neural stem cells.Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-tocell contact and through the secretion of growth factors and exosomes.Additionally,implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called“biobridges.”Furthermore,xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects,thereby supporting endogenous neuroregeneration.Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment,we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types.These approaches include:(1)co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis;(2)synergistic administration of stem cells and their exosomes to amplify paracrine effects;and(3)integration of stem cells within hydrogels,which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits.This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
文摘BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchymal stem cells(MSCs)regulating hematopoiesis in bone marrow(BM).In 2013,the study reported the existence in the synovium of a MSC subset,co-expressing CD73 and CD39,with greater osteo-chondrogenic potency and ability to produce adenosine.This subset expressed CD146,known to be associated with pericytes.AIM To investigate the presence and characterization of the CD73+CD39+CD146+MSC subset in BM.Furthermore,we explored the existence of this subset in mobilized blood.METHODS BM cells were culture expanded up to passage 4.Flow cytometry was used to verify expression of CD73,CD39,and CD146 markers.Cell sorting was performed via BDFACS AriaTM Fusion.The subset was assessed for defined MSC characteristics and perivascular localization in BM sections.Peripheral blood derived MSCs were obtained through apheresis performed at Gift of Life under Institutional Review Board donor consent.RESULTS Our findings demonstrated that the combination of CD73,CD39,and CD146 enabled the identification and purification of a subset of MSCs from culture-expanded BM,up to passage 4.This subset exhibited a CD45-CD73+CD39+CD146+phenotype,along with self-renewal and multipotency abilities,and was located in perivascular areas of BM sections.Additionally,this subset was found in both single and dual-mobilized leukopaks.CONCLUSION The CD73+CD39+CD146+cell subset showed self-renewal and multipotency abilities and was located in perivascular areas of BM.Such cell subset was also reported in single and dual-mobilized leukopaks.
基金supported by the National Natural Science Foundation of China,Nos.82271132(to YL),82101167(to BB)the Natural Science Foundation of Chongqing,Nos.CSTB2022NSCQ-MSX0020(to BB),cstc2019jcyj-msxmX0473(to FC).
文摘Our previous study demonstrated that combined transplantation of bone marrow mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplantation of retinal progenitor cells alone.Bone marrow mesenchymal stem cells regulate and interact with various cells in the retinal microenvironment by secreting neurotrophic factors and extracellular vesicles.Small extracellular vesicles derived from bone marrow mesenchymal stem cells,which offer low immunogenicity,minimal tumorigenic risk,and ease of transportation,have been utilized in the treatment of various neurological diseases.These vesicles exhibit various activities,including anti-inflammatory actions,promotion of tissue repair,and immune regulation.Therefore,novel strategies using human retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles may represent an innovation in stem cell therapy for retinal degeneration.In this study,we developed such an approach utilizing retinal progenitor cells combined with bone marrow mesenchymal stem cell-derived small extracellular vesicles to treat retinal degeneration in Royal College of Surgeons rats,a genetic model of retinal degeneration.Our findings revealed that the combination of bone marrow mesenchymal stem cell-derived small extracellular vesicles and retinal progenitor cells significantly improved visual function in these rats.The addition of bone marrow mesenchymal stem cell-derived small extracellular vesicles as adjuvants to stem cell transplantation with retinal progenitor cells enhanced the survival,migration,and differentiation of the exogenous retinal progenitor cells.Concurrently,these small extracellular vesicles inhibited the activation of regional microglia,promoted the migration of transplanted retinal progenitor cells to the inner nuclear layer of the retina,and facilitated their differentiation into photoreceptors and bipolar cells.These findings suggest that bone marrow mesenchymal stem cell-derived small extracellular vesicles potentiate the therapeutic efficacy of retinal progenitor cells in retinal degeneration by promoting their survival and differentiation.
文摘Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration.
文摘A recently published prospective study marks a breakthrough for congenital olfactory disorders in children.The study provides the first long-term,three-year follow-up data,robustly demonstrating the durable efficacy and safety of autologous nasal epithelial stem cell transplantation.This work reveals immense therapeutic potential for a condition traditionally considered untreatable.However,this milestone achievement also presents new challenges.To translate this pioneering therapy from a single-center success to a global standard,multicenter,controlled clinical trials must be initiated immediately.Only through rigorous validation can we ensure its widespread adoption and ultimately bring hope to millions of children worldwide.
基金the Joint Innovation Project Funds of Huaqiao University,No.2022YX001.
文摘The global incidence of asthma,a leading respiratory disorder affecting more than 235 million people,has dramatically increased in recent years.Characterized by chronic airway inflammation and an imbalanced response to airborne irritants,this chronic condition is associated with elevated levels of inflammatory factors and symptoms such as dyspnea,cough,wheezing,and chest tightness.Conventional asthma therapies,such as corticosteroids,long-actingβ-agonists,and antiinflammatory agents,often evoke diverse adverse reactions and fail to reduce symptoms and hospitalization rates over the long term effectively.These limitations have prompted researchers to explore innovative therapeutic strategies,including stem cell-related interventions,offering hope to those afflicted with this incurable disease.In this review,we describe the characteristics of stem cells and critically assess the potential and challenges of stem cell-based therapies to improve disease management and treatment outcomes for asthma and other diseases.
基金supported by the National Natural Science Foundation of China(32171347)the Foundation of Leading Talents from Shanghai Health Commission(2022XD038)+1 种基金Training Program for Research Physicians in Innovation,the Funda-mental Research Funds for the Central Universities(YG2023QNA23)Transforma-tion from shanghai hospital development center(SHDC2022CRD002).
文摘Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis.However,mechanisms associated with stem cell senescence require further investigation.In this study,we conducted a proteomic analysis of human dental pulp stem cells(HDPSCs)obtained from individuals of various ages.Our findings showed that the expression of NUP62 was decreased in aged HDPSCs.We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo.Conversely,the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs.Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression,we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1.This,in turn,stimulates the transcription of the epigenetic enzyme NSD2.Finally,the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes(HMGA1,HMGA2,and SIRT6).Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005Zhejiang Medical Technology Project,No.2020KY439,No.2022RC009,No.2024KY645,and No.2024KY697.
文摘Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus erythematosus.Treatment options include glucocorticoids,immunosuppressive agents and the addition of biologics.Recently,the therapeutic role of mesenchymal stem cells(MSCs)in LN has received extensive attention worldwide.MSCs can suppress autoimmunity,alleviate proteinuria and restore renal function by modulating the functions of various immune cells and reducing the secretion of inflammatory cytokines.Several clinical trials have investigated MSC treatment in LN with promising but sometimes inconsistent outcomes.This review summarizes the sources of MSCs and mechanisms in immunoregulation.Furthermore,it examines clinical trials evaluating the efficacy,safety,and limitations of MSC therapy in LN.By highlighting advances and ongoing challenges,this review underscores the potential of MSCs for LN treatment.More large-scale randomized controlled trials are needed to support the effectiveness of this therapy and pave the way for personalized and combinatorial therapeutic approaches.
基金the Ministry of Science and Technology Taiwan,No.MOST 109-2314-B-182A-091,No.NSTC 112-2314-B-182A-062, No.NSTC 113-2314-B-182A-125.
文摘BACKGROUND The incidence of diabetic atherosclerosis(DMA)is increasing worldwide,but its pathogenesis remains incompletely understood.In addition to cardiovascular complications,bladder dysfunction is one of the common comorbidities associated with DMA but is often refractory to current treatments.AIM To investigate the therapeutic effect of human amniotic fluid stem cell-derived extracellular vesicles(hAFSC-EVs)on the recovery of bladder dysfunction in DMA rats.METHODS Eighty rats were divided into normal control,streptozotocin-induced diabetic rats,diabetic rats subjected to arterial balloon endothelial injury of common iliac artery(DMA),and DMA rats treated with hAFSC-EVs(DMA+hAFSC-EVs).At 4 weeks and 12 weeks after DMA induction,levels of blood glucose,total cholesterol,triglyceride,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,homeostasis model assessment(HOMA)-insulin resistance,and HOMA-βwere measured.Cystometry,common iliac artery wall thickness,and bladder tumor necrosis factor(TNF)-α,interleukin(IL)-6,transforming growth factor(TGF)-β1,Smad3,connective tissue growth factor(CTGF)and fibronectin were also evaluated.RESULTS Bladder weight and blood glucose,triglyceride,HOMA-insulin resistance,common iliac artery intima thickness,voided volume,intercontraction interval,bladder capacity,and mRNA expression of TNF-α,IL-6,TGF-β1,Smad3,CTGF and fibronectin were significantly increased at 4 weeks and 12 weeks after induction,while the HOMA-βlevel decreased at 4 weeks and 12 weeks,and the high-density lipoprotein cholesterol level decreased at 12 weeks.hAFSC-EVs treatment in DMA rats significantly reduced bladder weight and blood glucose,thickness of common iliac arterial intima,voided volume,intercontraction interval and bladder capacity at 4 weeks.The mRNA expression of TNF-α,TGF-β1,and CTGF in DMA rats treated with hAFSC-EVs were significantly decreased at 4 weeks,while the mRNA expressions of IL-6 and Smad3 were significantly decreased 12 weeks.CONCLUSION hAFSC-EVs treatment can help restore DMA-induced bladder dysfunction,which is associated with lowered blood glucose levels,reduced arterial wall thickness,and decreased TNF-α,IL-6,TGF-β1,Smad3,and CTGF expression.
基金supported by the National Natural Science Foundation of China,No.32171356(to YW)Self-Support Research Projects of Shihezi University,No.ZZZC2021105(to WJ)+1 种基金Capital Medical University Natural Science Cultivation Fund,No.PYZ23044(to FQM)Beijing Municipal Natural Science Foundation,No.7244410(to JHD)。
文摘Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells encounter various obstacles,including limited tissue sources,invasive acquisition methods,cellular heterogeneity,purification challenges,cellular senescence,and diminished pluripotency and proliferation over successive passages.In this study,we used induced pluripotent stem cell-derived mesenchymal stem cells,known for their self-renewal capacity,multilineage differentiation potential,and immunomodulatory characteristics.We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury.Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation.Furthermore,the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats.Additionally,our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization.Collectively,our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats,offering promising therapeutic strategies for clinical translation.
基金National Natural Science Foundation of China,No.82003223and China Postdoctoral Science Foundation,No.2020M671398.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors of the digestive system worldwide,the prognosis of patients with advanced GC remains poor.AIM To evaluate the combined expression characteristics of cancer stem cell markers CD24 and CD133 in GC pathological tissues,and to explore their association with patients’clinicopathological parameters and postoperative survival outcomes.METHODS A total of 304 GC patients who underwent surgical treatment in our hospital from January 2018 to January 2020 were retrospectively included.Immunohistochemistry was used to detect the protein expression of CD24 and CD133 in tumor tissues,adjacent tissues,and normal gastric mucosa tissues.Based on staining intensity and the proportion of positive cells,expression levels were classified into low and high expression,while clinicopathological parameters were recorded.χ2 test was used to evaluate the correlation between expression and categorical variables,Spearman rank correlation analysis was performed to assess the correlation between the expression intensities of the two markers,and multivariate regression models were applied to identify independent risk factors influencing co-expression.Kaplan-Meier survival curves and Log-rank test were used to compare survival differences among groups with different expression patterns.RESULTS Among the 304 patients,155 cases(50.99%)were CD24 positive,including 91 low-expression and 64 highexpression;133 cases(43.75%)were CD133 positive,including 81 low-expression and 52 high-expression.There were 74 cases(24.34%)with double positivity and 81 cases(26.64%)with double negativity.Compared with tumor tissues,the positive rates of CD24 and CD133 in normal gastric tissues and adjacent tissues were significantly lower(P<0.05).Univariate analysis showed that co-expression of CD24 and CD133 in GC tissues was significantly correlated with tumor size,Lauren classification,T stage,N stage,and vascular invasion(P<0.05),but not with patient age,gender,tumor site,World Health Organization histological classification,or M stage(P>0.05).Further multivariate regression analysis suggested that tumor size,T stage,N stage,and vascular invasion were independent risk factors promoting CD24 and CD133 double positivity.Spearman rank correlation analysis indicated a moderate positive correlation between their expression intensities(r=0.420,P<0.001).During follow-up,29 of 304 patients were lost(loss rate 9.54%);146 deaths occurred.According to expression combination,there were 89 cases of CD24 single positivity(39 deaths),68 cases of CD133 single positivity(31 deaths),81 cases of double negativity(25 deaths),and 66 cases of double positivity(51 deaths).Log-rank test showed significant differences in overall survival among the four groups(χ2=20.89,P<0.001),with CD24+/CD133+group showing the worst prognosis.CONCLUSION CD24 and CD133 exhibit high positive detection rates in GC tissues,and their co-positivity is closely associated with tumor stage progression and significantly indicates unfavorable survival outcomes.The co-expression of CD24/CD133 may reflect higher aggressiveness and metastatic potential of GC,serving as a potential prognostic marker and a direction for targeted therapeutic strategies.However,as this is a single-center retrospective study with limitations such as patient loss to follow-up and sample size,further prospective,multicenter,and mechanistic studies are required to validate its clinical applicability and biological role.
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
文摘Stem cells are pluripotent cells that can divide and differentiate,forming many different types of cells.Stem cells can be obtained from various sources,with embryonic stem cells being the most advantageous as they possess a broad dividing potential.When the standard treatment proves ineffective,stem cells are typically utilized as a final option.Infections and childhood malignancies are among the significant causes of mortality in the pediatric population.Stem cell therapy has shown a decrease in morbidity and mortality when used in patients with favorable conditions like young age and lack of comorbidities.This review discusses how stem cells are prepared and used in treating pediatric diseases like X-linked agammaglobulinemia,diabetes mellitus,aplastic anemia,infections,and leukemia.Technological advancement has played a significant role in producing more specific stem cells using genetic modification methods like clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9,which produce stem cells that target a particular cell type,e.g.,myocytes and hematopoietic cells,further increasing the effectiveness of the therapy.We address the obstacles faced when conducting research related to stem cells,including ethical and legal issues,which hinder the use of this therapy in some fields.We also indicate recommendations for increasing the efficacy of stem cell therapy in the pediatric population.
基金supported by the National Research Foundation of Korea,Nos.2021R1A2C2006110,2021M3E5D9021364,2019R1A5A2026045(to BGK)the Korea Initiative for Fostering University of Research and Innovation(KIURI)Program of the NRF funded by the MSIT(to HK),No.NRF2021M3H1A104892211(to HSK)。
文摘Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury.
文摘BACKGROUND Mesenchymal stem cells(MSCs)are considered a promising therapy for various diseases due to their strong potential in regenerative medicine and immunomodulation.The tissue source of MSCs has gained attention for its role in influencing their function,accessibility,and readiness for clinical use.AIM To identify the most suitable adipose source for MSC isolation and expansion for further applications.METHODS We isolated MSCs from solid adipose tissue and liposuction aspirates using the enzyme method.The MSCs were examined for their expansion using population doubling time,differentiation capacity using multilineage differentiation induction,surface markers using flow cytometry,and stability of chromosomes using the karyotyping method.Growth factors and cytokines in MSC-conditioned media were analyzed using the Luminex assay.RESULTS MSCs were isolated from solid adipose tissue and lipoaspirates and expanded from passage 0 to passage 2.All adipose-derived MSCs(AD-MSCs)exhibited the typical elongated,spindle-shaped morphology and comparable proliferation rate.They expressed positive surface markers(cluster of differentiation 73[CD73]:>97%,CD90:>98%,and CD105:>95%),and negative markers(<1%).All MSCs expressed similar levels of stemness genes(octamer-binding transcription factor 4,SRY-box 2,Krüppel-like factor,and MYC),colonyforming,and trilineage differentiation potential.Karyotyping analysis revealed normal chromosomal patterns in all samples,except one sample exhibiting a polymorphism(1qh+).Furthermore,the growth factors and cytokines of hepatocyte growth factor,vascular endothelial growth factor A,interleukin 6(IL-6),and IL-8 were detected in all AD-MSC conditioned media;but fibroblast growth factor-2 and keratinocyte growth factor were selectively expressed in conditioned media from solid or lipoaspirate AD-MSCs,respectively.CONCLUSION These findings indicate that AD-MSCs from both adipose sources possess all of the characteristic features of MSCs with source-specific secretome differences,which are suitable for further expansion and various clinical applications.