In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is con...In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is converted to binary codes to maximize the storage of data inside the image. By applying the proposed algorithm, a system called Steganography Imaging System (gig) is developed. The system is then tested to see the viability of the proposed algorithm. Various sizes of data are stored inside the images and the Peak signal-to-noise ratio (PSNR) is also captured for each of the images tested. Based on the PSNR value of each images, the stego image has a higher PSNR value. Hence this new steganography algorithm is very efficient to hide the data inside the image.展开更多
With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process...With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process of compression, were proposed to transmit covert messages. However, if a sender does not have the original waveform audio format (WAV) audio, the architecture cannot be used. In this paper, a new covert message method, which takes effect after WAV audio is compressed into AMR-WB speech, is proposed. This method takes advantage of algebraic codebook search. Aiming at improving speed and reducing search space, it does not perform algebraic codebook search using the optimal search algorithm, and it does not reach the positions of non-zero pulses via depth-first tree search that characterizes the energy of audio. According to the features of search methods and the codebook index construction, every track in each subframe is analyzed to find the proper positions for embedding secret information. Experimental results show that the proposed method has satisfactory capacity and simplicity regardless of compression process.展开更多
文摘In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is converted to binary codes to maximize the storage of data inside the image. By applying the proposed algorithm, a system called Steganography Imaging System (gig) is developed. The system is then tested to see the viability of the proposed algorithm. Various sizes of data are stored inside the images and the Peak signal-to-noise ratio (PSNR) is also captured for each of the images tested. Based on the PSNR value of each images, the stego image has a higher PSNR value. Hence this new steganography algorithm is very efficient to hide the data inside the image.
基金supported by the Fundamental Research Funds for the Central Universities (2016JX06)the National Natural Science Foundation of China (61472369)
文摘With the popularity of adaptive multi-rate wideband (AMR-WB) audio in mobile communication, many AMR- WB based techniques, such as a similar compression architecture to transmit secret information during the process of compression, were proposed to transmit covert messages. However, if a sender does not have the original waveform audio format (WAV) audio, the architecture cannot be used. In this paper, a new covert message method, which takes effect after WAV audio is compressed into AMR-WB speech, is proposed. This method takes advantage of algebraic codebook search. Aiming at improving speed and reducing search space, it does not perform algebraic codebook search using the optimal search algorithm, and it does not reach the positions of non-zero pulses via depth-first tree search that characterizes the energy of audio. According to the features of search methods and the codebook index construction, every track in each subframe is analyzed to find the proper positions for embedding secret information. Experimental results show that the proposed method has satisfactory capacity and simplicity regardless of compression process.