Maximal steered coherence(MSC)is a noteworthy resource measure in the field of quantum information,and it is defined under the framework of coherence measure and the formalism of quantum steering ellipsoids(QSEs).Here...Maximal steered coherence(MSC)is a noteworthy resource measure in the field of quantum information,and it is defined under the framework of coherence measure and the formalism of quantum steering ellipsoids(QSEs).Here,we explore the MSC of a two-qubit X state under the common influences of reservoir and noise.The results disclose that the introduction of auxiliary qubits can give rise to enhancement of the MSC in both the strong and weak coupling regimes.Moreover,more auxiliary qubits can decrease the oscillation period of the MSC,and also suppress the oscillation amplitude of the MSC in the strong coupling regime.In contrast,the increases in auxiliary qubits result in the oscillation of the MSC for the setting of the initially weak coupling regime.Of particular interest is that the improvement effects of more auxiliary qubits on the MSC in the initially weak coupling regime are significantly stronger than that in the initially strong coupling regime.展开更多
The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineeri...The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.展开更多
Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA)...Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA) model for branched alkanes. The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps. At the beginning, the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process. Statistical parameters as mean-square radii of gyration 〈S2〉xy, 〈S2〉z, shape factor 〈δ〉, describing the conformational changes, sectional density 〈den〉 which gives the states of the chain, and average surface attractive energy 〈Ua〉, average total energy 〈U〉, average force 〈f〉 probed by the spring, which characterize the thermodynamic properties, are calculated in the stimulant process. Remarkably, distinguishing from the case in linear chains that there only exists one long plateau in the curve of 〈f 〉, the force plateau in our study for star chains is multiple, denoting different steps of desorption, and this agrees well with the experimental results in essence. We find during the tensile process, there are three characteristic distances Zc, Zt and Z0 from the attractive surface, and these values vary with N. When Z = Zc, the chain is stripped from the surface, but due to the form of wall-monomer interaction, the surface retains weak influence on the chain till Z = Zc. From Z = Zt, parameters 〈Ua〉, 〈U〉 and 〈f〉 respectively reach a stable value, while the shape and the size of the chain still need adjustments after Zt till Zo to reach their equilibrium states. Specifically, for short chain of N = 41, Zt and Z0 are incorporated. These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains.展开更多
The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP se...The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.展开更多
In this paper the influence of a knot on the structure of a polymethylene (PM) strand in the tensile process is investigated by using the steered molecular dynamics (SMD) method. The gradual increasing of end-to-e...In this paper the influence of a knot on the structure of a polymethylene (PM) strand in the tensile process is investigated by using the steered molecular dynamics (SMD) method. The gradual increasing of end-to-end distance, R, results in a tighter knot and a more stretched contour. That the break in a knotted rope almost invariably occurs at a point just outside the 'entrance' to the knot, which has been shown in a good many experiments, is further theoretically verified in this paper through the calculation of some structural and thermodynamic parameters. Moreover, it is found that the analyses on bond length, torsion angle and strain energy can facilitate to the study of the localization and the size of a knot in the tensile process. The symmetries of torsion angles, bond lengths and bond angles in the knot result in the whole symmetry of the knot in microstructure, thereby adapting itself to the strain applied. Additionally, the statistical property of the force-dependent average knot size illuminates in detail the change in size of a knot with force f, and therefore the minimum size of the knot in the restriction of the potentials considered in this work for a PM chain is deduced. At the same time, the difference in response to uniaxial strain, between a knotted PM strand and an unknotted one is also investigated. The force-extension profile is easily obtained from the simulation. As expected, for a given f, the knotted chain has an R significantly smaller than that of an unknotted polymer. However, the scaled difference becomes less pronounced for larger values of N, and the results for longer chains approach those of the unknotted chains.展开更多
The giant muscle protein titin known for its mechanical stability serves as an ideal model for developing protein-based biomaterials.However,practical applications are hindered by challenges such as low expression yie...The giant muscle protein titin known for its mechanical stability serves as an ideal model for developing protein-based biomaterials.However,practical applications are hindered by challenges such as low expression yields,poor solubility,and limited thermal stability.In this study,we combined artificial intelligence(AI)tools—ProteinMPNN and Alpha-Fold2—with human insights and steered molecular dynamics(SMD)simulations to redesign the titin Ig domain.This approach generated thousands of novel sequences,preserving structural features essential for mechanical stability.Six de novo proteins were experimentally validated,all demonstrating mechanical and kinetic stability comparable to the natural I27 domain at the 100 pN level.Notably,these proteins exhibited significantly improved physical properties,with up to a fivefold increase in expression yield and enhanced solubility.Circular dichroism and atomic force microscopy-based single molecule force spectroscopy(AFM-SMFS)confirmed proper folding and mechanical stability,while thermal stability was retained or improved in some designs.Control experiments with unguided random designs,which yielded negative results,underscored the critical role of integrating AI tools with domain-specific knowledge for functional outcomes.Our findings highlight the transformative potential of integrating AI-driven design with human expertise and computational simulations,enabling the development of mechanically robust proteins for applications in bioengineering and biomaterials science.展开更多
The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a ...The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a microphone array, each location corresponds to a set of time differences of arrival (TDOAs), and this paper collects them into a TDOA vector. Since the TDOA vectors in the adjacent regions are similar, we present a fast algorithm based on clustering search to reduce the computation complexity of SRP-PHAT. In the training stage, the K-means or Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm is used to find the centroid in each cluster with similar TDOA vectors. In the procedure of sound localization, the optimal cluster is found by comparing the steered response powers (SRPs) of all centroids. The SRPs of all candidate locations in the optimal cluster are compared to localize the sound source. Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computational load of the proposed method with those of the conventional SRP-PHAT algorithm. The results show that the proposed method is able to reduce the computational load drastically and maintains almost the same localization accuracy and robustness as those of the conventional SRP-PHAT algorithm. The difference in localization performance brought by different clustering algorithms used in the training stage is trivial.展开更多
Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dy- namics (SMD) is a complementary appr...Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dy- namics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be ac- cessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of bind- ing and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APAfrom HIV-1 reverse transcriptase.展开更多
With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
President Xi Jinping’s APEC trip underscores China’s resolve to advance openness,cooperation,and shared prosperity across the Asia-Pacific region.FROM October 30 to November 1,2025,Chinese President Xi Jinping trave...President Xi Jinping’s APEC trip underscores China’s resolve to advance openness,cooperation,and shared prosperity across the Asia-Pacific region.FROM October 30 to November 1,2025,Chinese President Xi Jinping traveled to the Republic of Korea(ROK)to attend the 32nd Asia-Pacific Economic Cooperation(APEC)Economic Leaders’Meeting and also pay a state visit to the country.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SR...This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SRG’s performance evaluation stems mainly from the effect of the free surface,the varying sailing speeds of the ship,and its performance while functioning at the stern of the waterjet-propelled vessel.Parameters such as the length,width,and height of the steering gear,as well as the inclination,width,and curvature of the reversing gear,significantly influence the SRG.Although the free surface has a great impact on the force of the SRG,its performance trend remains unaffected.When the SRG operates at the stern of the ship,the optimized scheme’s lateral force improves by an average of 8.08%for sailing with a rudder angle condition and an average of 45.69%for reversing sailing with a rudder angle condition.The longitudinal force of the optimized scheme improves by more than 23%when sailing without a rudder angle condition and by an average of 31.75%when sailing with a reversed rudder angle condition.Additionally,the speed of the rotor has a minimal effect on the lateral force and a significant effect on the longitudinal force.展开更多
We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system...We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity,leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies.展开更多
The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks an...The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system.展开更多
We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an a...We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.展开更多
In order to enhance the safety of autonomous driving vehicles,this work focuses on the issue of automatic-to-manual mode transition in the column electric power steering(C-EPS)system.First,we utilized an extended stat...In order to enhance the safety of autonomous driving vehicles,this work focuses on the issue of automatic-to-manual mode transition in the column electric power steering(C-EPS)system.First,we utilized an extended state observer to estimate the driver's steering torque and designed a steering mode transition unit.Second,we validated the mode switching function through an experimental platform.The results indicated that when using the extended state observer for torque estimation,the steering wheel angle and lower input angle errors were approximately±0.5%.The input and observed torque curves were closely aligned,demonstrating excellent tracking capability of the system.In addition,by adopting a steering mode conversion unit,the switch from autonomous control to manual control has been obtained,achieving a smooth and minimal change in steering wheel angle without significant bumps.The experimental results demonstrate that the designed mode switching strategy has the advantages of speed and smoothness,and has strong practical value.展开更多
To enable optimal navigation for unmanned surface vehicle(USV),we proposed an adaptive hybrid strategy-based sparrow search algorithm(SSA)for efficient and reliable path planning.The proposed method began by enhancing...To enable optimal navigation for unmanned surface vehicle(USV),we proposed an adaptive hybrid strategy-based sparrow search algorithm(SSA)for efficient and reliable path planning.The proposed method began by enhancing the fitness function to comprehensively account for critical path planning metrics,including path length,turning angle,and navigation safety.To improve search diversity and effectively avoid premature convergence to local optima,chaotic mapping was employed during the population initialization stage,allowing the algorithm to explore a wider solution space from the outset.A reverse inertia weight mechanism was introduced to dynamically balance exploration and exploitation across different iterations.The adaptive adjustment of the inertia weight further improved convergence efficiency and enhanced global optimization performance.In addition,a Cauchy-Gaussian hybrid update strategy was incorporated to inject randomness and variation into the search process,which helped the algorithm escape local minima and maintain a high level of solution diversity.This approach significantly enhanced the robustness and adaptability of the optimization process.Simulation experiments confirmed that the improved SSA consistently outperformed benchmark algorithms such as the original SSA,PSO,and WMR-SSA.Compared with the three algorithms,in the simulated sea area,the path lengths of the proposed algorithm are reduced by 21%,21%,and 16%,respectively,and under the actual sea simulation conditions,the path lengths are reduced by 13%,15%,and 11%,respectively.The results highlighted the effectiveness and practicality of the proposed method,providing an effective solution for intelligent and autonomous USV navigation in complex ocean environments.展开更多
The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and w...The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction.It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction.The anomalous refraction behavior is achieved in the wide range of incident angles from 28°to 78°,and the efficiency of-1st order diffraction is higher than 90%by finely designing the metagrating structure.The anomalous refraction behaviors are verified experimentally at incidence angle of 28°,45°,and 78°,respectively.The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.展开更多
In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordinat...In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+4 种基金the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant No.2023AH052648)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20).
文摘Maximal steered coherence(MSC)is a noteworthy resource measure in the field of quantum information,and it is defined under the framework of coherence measure and the formalism of quantum steering ellipsoids(QSEs).Here,we explore the MSC of a two-qubit X state under the common influences of reservoir and noise.The results disclose that the introduction of auxiliary qubits can give rise to enhancement of the MSC in both the strong and weak coupling regimes.Moreover,more auxiliary qubits can decrease the oscillation period of the MSC,and also suppress the oscillation amplitude of the MSC in the strong coupling regime.In contrast,the increases in auxiliary qubits result in the oscillation of the MSC for the setting of the initially weak coupling regime.Of particular interest is that the improvement effects of more auxiliary qubits on the MSC in the initially weak coupling regime are significantly stronger than that in the initially strong coupling regime.
文摘The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.
基金supported by the National Natural Science Foundation of China(Nos.20904047,10947104).
文摘Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics (SMD) simulation method based on the united-atom (UA) model for branched alkanes. The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps. At the beginning, the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process. Statistical parameters as mean-square radii of gyration 〈S2〉xy, 〈S2〉z, shape factor 〈δ〉, describing the conformational changes, sectional density 〈den〉 which gives the states of the chain, and average surface attractive energy 〈Ua〉, average total energy 〈U〉, average force 〈f〉 probed by the spring, which characterize the thermodynamic properties, are calculated in the stimulant process. Remarkably, distinguishing from the case in linear chains that there only exists one long plateau in the curve of 〈f 〉, the force plateau in our study for star chains is multiple, denoting different steps of desorption, and this agrees well with the experimental results in essence. We find during the tensile process, there are three characteristic distances Zc, Zt and Z0 from the attractive surface, and these values vary with N. When Z = Zc, the chain is stripped from the surface, but due to the form of wall-monomer interaction, the surface retains weak influence on the chain till Z = Zc. From Z = Zt, parameters 〈Ua〉, 〈U〉 and 〈f〉 respectively reach a stable value, while the shape and the size of the chain still need adjustments after Zt till Zo to reach their equilibrium states. Specifically, for short chain of N = 41, Zt and Z0 are incorporated. These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains.
基金Supported by the National Natural Science Foundation of China(No.61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1308)
文摘The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 20274040,20574052 and 20774066)the Program for New Century Excellent Talents in University,China (Grant No NCET-05-0538)the Natural Science Foundation of Zhejiang Province,China (Grant No R404047)
文摘In this paper the influence of a knot on the structure of a polymethylene (PM) strand in the tensile process is investigated by using the steered molecular dynamics (SMD) method. The gradual increasing of end-to-end distance, R, results in a tighter knot and a more stretched contour. That the break in a knotted rope almost invariably occurs at a point just outside the 'entrance' to the knot, which has been shown in a good many experiments, is further theoretically verified in this paper through the calculation of some structural and thermodynamic parameters. Moreover, it is found that the analyses on bond length, torsion angle and strain energy can facilitate to the study of the localization and the size of a knot in the tensile process. The symmetries of torsion angles, bond lengths and bond angles in the knot result in the whole symmetry of the knot in microstructure, thereby adapting itself to the strain applied. Additionally, the statistical property of the force-dependent average knot size illuminates in detail the change in size of a knot with force f, and therefore the minimum size of the knot in the restriction of the potentials considered in this work for a PM chain is deduced. At the same time, the difference in response to uniaxial strain, between a knotted PM strand and an unknotted one is also investigated. The force-extension profile is easily obtained from the simulation. As expected, for a given f, the knotted chain has an R significantly smaller than that of an unknotted polymer. However, the scaled difference becomes less pronounced for larger values of N, and the results for longer chains approach those of the unknotted chains.
基金the funding support from the National Natural Science Foundation of China(grant nos.22222703 and 22477058)the Natural Science Foundation of Jiangsu Province,China(grant no.BK20202004)the Fundamental Research Funds for the Central Universities,China(grant no.020514380335).
文摘The giant muscle protein titin known for its mechanical stability serves as an ideal model for developing protein-based biomaterials.However,practical applications are hindered by challenges such as low expression yields,poor solubility,and limited thermal stability.In this study,we combined artificial intelligence(AI)tools—ProteinMPNN and Alpha-Fold2—with human insights and steered molecular dynamics(SMD)simulations to redesign the titin Ig domain.This approach generated thousands of novel sequences,preserving structural features essential for mechanical stability.Six de novo proteins were experimentally validated,all demonstrating mechanical and kinetic stability comparable to the natural I27 domain at the 100 pN level.Notably,these proteins exhibited significantly improved physical properties,with up to a fivefold increase in expression yield and enhanced solubility.Circular dichroism and atomic force microscopy-based single molecule force spectroscopy(AFM-SMFS)confirmed proper folding and mechanical stability,while thermal stability was retained or improved in some designs.Control experiments with unguided random designs,which yielded negative results,underscored the critical role of integrating AI tools with domain-specific knowledge for functional outcomes.Our findings highlight the transformative potential of integrating AI-driven design with human expertise and computational simulations,enabling the development of mechanically robust proteins for applications in bioengineering and biomaterials science.
基金supported by the National Natural Science Foundation of China(Grant Nos. 60971098 and 61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(Grant No.XDXX1308)
文摘The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a microphone array, each location corresponds to a set of time differences of arrival (TDOAs), and this paper collects them into a TDOA vector. Since the TDOA vectors in the adjacent regions are similar, we present a fast algorithm based on clustering search to reduce the computation complexity of SRP-PHAT. In the training stage, the K-means or Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm is used to find the centroid in each cluster with similar TDOA vectors. In the procedure of sound localization, the optimal cluster is found by comparing the steered response powers (SRPs) of all centroids. The SRPs of all candidate locations in the optimal cluster are compared to localize the sound source. Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computational load of the proposed method with those of the conventional SRP-PHAT algorithm. The results show that the proposed method is able to reduce the computational load drastically and maintains almost the same localization accuracy and robustness as those of the conventional SRP-PHAT algorithm. The difference in localization performance brought by different clustering algorithms used in the training stage is trivial.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20102007,29725203 and 20072042)the State Key Program of Basic Research of China(Grant No.2002CB512802)+1 种基金the 863 Hi-Tech Program of China(Grant Nos.2002AA233011,2002AA233061,2001AA235051 and 2001AA 235041)Foundation of Shanghai Ministry of Science and Technology,and the Key Program of New Drug Research and Development from the Chinese Academy of Sciences.
文摘Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dy- namics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be ac- cessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of bind- ing and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APAfrom HIV-1 reverse transcriptase.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
文摘President Xi Jinping’s APEC trip underscores China’s resolve to advance openness,cooperation,and shared prosperity across the Asia-Pacific region.FROM October 30 to November 1,2025,Chinese President Xi Jinping traveled to the Republic of Korea(ROK)to attend the 32nd Asia-Pacific Economic Cooperation(APEC)Economic Leaders’Meeting and also pay a state visit to the country.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.
基金supported by the Sanya Science and Education Innovation Park of Wuhan University of Technology(Grant No.2022KF0017)Hainan Provincial Natural Science Foundation of China(Grant No.522QN342)+1 种基金the National Natural Science Foundation of China(Grant No.52201376)Natural Science Foundation of Hubei Province,China(Grant No.2023AFB683).
文摘This study aims to enhance the maneuvering advantages of the waterjet unit through parametric design,performance evaluation,and optimization of the one-piece waterjet propulsion steering and reversing gear(SRG).The SRG’s performance evaluation stems mainly from the effect of the free surface,the varying sailing speeds of the ship,and its performance while functioning at the stern of the waterjet-propelled vessel.Parameters such as the length,width,and height of the steering gear,as well as the inclination,width,and curvature of the reversing gear,significantly influence the SRG.Although the free surface has a great impact on the force of the SRG,its performance trend remains unaffected.When the SRG operates at the stern of the ship,the optimized scheme’s lateral force improves by an average of 8.08%for sailing with a rudder angle condition and an average of 45.69%for reversing sailing with a rudder angle condition.The longitudinal force of the optimized scheme improves by more than 23%when sailing without a rudder angle condition and by an average of 31.75%when sailing with a reversed rudder angle condition.Additionally,the speed of the rotor has a minimal effect on the lateral force and a significant effect on the longitudinal force.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12204440)Fundamental Research Program of Shanxi Province (Grant Nos. 20210302123063 and 202103021223184)。
文摘We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity,leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies.
基金Supported by National Natural Science Foundation of China(Grant No.52332013)。
文摘The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system.
基金Project supported by the Education Department of Jilin Province,China(Grant No.JJKH20231291KJ)。
文摘We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.
基金Supported by the National Natural Science Foundation of China(52172324)Key Research and Development Plan of Shaanxi Province(2021GY-285,2021SF-483)+1 种基金Science and Technology Project of Shaanxi Provincial Department of Transport(21-20K,20-38T)Fundamental Research Funds for the Central Universities,CHD(300102323501)。
文摘In order to enhance the safety of autonomous driving vehicles,this work focuses on the issue of automatic-to-manual mode transition in the column electric power steering(C-EPS)system.First,we utilized an extended state observer to estimate the driver's steering torque and designed a steering mode transition unit.Second,we validated the mode switching function through an experimental platform.The results indicated that when using the extended state observer for torque estimation,the steering wheel angle and lower input angle errors were approximately±0.5%.The input and observed torque curves were closely aligned,demonstrating excellent tracking capability of the system.In addition,by adopting a steering mode conversion unit,the switch from autonomous control to manual control has been obtained,achieving a smooth and minimal change in steering wheel angle without significant bumps.The experimental results demonstrate that the designed mode switching strategy has the advantages of speed and smoothness,and has strong practical value.
基金supported by Shandong Provincial Department of Science and Technology Project(No.2022C01246)National Undergraduate Innovation Training Project(Nos.202410390028,202310390026)+1 种基金Fujian Provincial Undergraduate Innovation Training Project(No.202410390093)Jimei University Innovation Training Project(Nos.2024xj224,2023xj179).
文摘To enable optimal navigation for unmanned surface vehicle(USV),we proposed an adaptive hybrid strategy-based sparrow search algorithm(SSA)for efficient and reliable path planning.The proposed method began by enhancing the fitness function to comprehensively account for critical path planning metrics,including path length,turning angle,and navigation safety.To improve search diversity and effectively avoid premature convergence to local optima,chaotic mapping was employed during the population initialization stage,allowing the algorithm to explore a wider solution space from the outset.A reverse inertia weight mechanism was introduced to dynamically balance exploration and exploitation across different iterations.The adaptive adjustment of the inertia weight further improved convergence efficiency and enhanced global optimization performance.In addition,a Cauchy-Gaussian hybrid update strategy was incorporated to inject randomness and variation into the search process,which helped the algorithm escape local minima and maintain a high level of solution diversity.This approach significantly enhanced the robustness and adaptability of the optimization process.Simulation experiments confirmed that the improved SSA consistently outperformed benchmark algorithms such as the original SSA,PSO,and WMR-SSA.Compared with the three algorithms,in the simulated sea area,the path lengths of the proposed algorithm are reduced by 21%,21%,and 16%,respectively,and under the actual sea simulation conditions,the path lengths are reduced by 13%,15%,and 11%,respectively.The results highlighted the effectiveness and practicality of the proposed method,providing an effective solution for intelligent and autonomous USV navigation in complex ocean environments.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFB3811400 and 2022YFB3806000)the National Natural Science Foundation of China(Grant No.12074314)+1 种基金the Science and Technology New Star Program of Shaanxi Province,China(Grant No.2023KJXX-148)the Fundamental Research Funds for the Central Universities。
文摘The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction.It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction.The anomalous refraction behavior is achieved in the wide range of incident angles from 28°to 78°,and the efficiency of-1st order diffraction is higher than 90%by finely designing the metagrating structure.The anomalous refraction behaviors are verified experimentally at incidence angle of 28°,45°,and 78°,respectively.The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.
基金Supported by National Natural Science Foundation of China(Grant Nos.U22A20246,52372382)Hefei Municipal Natural Science Foundation(Grant No.2022008)+1 种基金the Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2023-06)S&T Program of Hebei(Grant No.225676162GH).
文摘In the parallel steering coordination control strategy for path tracking,it is difficult to match the current driver steering model using the fixed parameters with the actual driver,and the designed steering coordination control strategy under a single objective and simple conditions is difficult to adapt to the multi-dimensional state variables’input.In this paper,we propose a deep reinforcement learning algorithm-based multi-objective parallel human-machine steering coordination strategy for path tracking considering driver misoperation and external disturbance.Firstly,the driver steering mathematical model is constructed based on the driver preview characteristics and steering delay response,and the driver characteristic parameters are fitted after collecting the actual driver driving data.Secondly,considering that the vehicle is susceptible to the influence of external disturbances during the driving process,the Tube MPC(Tube Model Predictive Control)based path tracking steering controller is designed based on the vehicle system dynamics error model.After verifying that the driver steering model meets the driver steering operation characteristics,DQN(Deep Q-network),DDPG(Deep Deterministic Policy Gradient)and TD3(Twin Delayed Deep Deterministic Policy Gradient)deep reinforcement learning algorithms are utilized to design a multi-objective parallel steering coordination strategy which satisfies the multi-dimensional state variables’input of the vehicle.Finally,the tracking accuracy,lateral safety,human-machine conflict and driver steering load evaluation index are designed in different driver operation states and different road environments,and the performance of the parallel steering coordination control strategies with different deep reinforcement learning algorithms and fuzzy algorithms are compared by simulations and hardware in the loop experiments.The results show that the parallel steering collaborative strategy based on a deep reinforcement learning algorithm can more effectively assist the driver in tracking the target path under lateral wind interference and driver misoperation,and the TD3-based coordination control strategy has better overall performance.