It is traditionally assumed that the relationship between wave steepness and wave age is inde- pendent of the wind wave growth state. In fact, the traditional relationship can not describe the whole course of wind w...It is traditionally assumed that the relationship between wave steepness and wave age is inde- pendent of the wind wave growth state. In fact, the traditional relationship can not describe the whole course of wind wave growth. This paper assumes that the relationship between wave steepness and wave age changes with the variety of dimensionless fetch. Based on the relationship proposed by Hou and Wen (1990), a new relation- ship in the course of wind wave growth is revealed. Comparisons between the present study and other previous relationships show that this new relationship explains better the observations than the other existing relationships. In the case of small fetch, wave age value increases more quickly than other models while it is in opposition to that in the case of large fetch. The result in present paper can clearly reflect the whole course of wind wave growth, it is an improvement for traditional results.Key words: wave steepness, wave age, relationship between wave steepness and wave age展开更多
Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity...Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the “3/2-power law” (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves. Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.展开更多
A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical p...A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.展开更多
Research on the pulsed flashover characteristics of vacuum insulation material is significant for the design and manufacture of pulse power devices. In view of the voltage increase rate of the fast pulse (pulse steep...Research on the pulsed flashover characteristics of vacuum insulation material is significant for the design and manufacture of pulse power devices. In view of the voltage increase rate of the fast pulse (pulse steepness), the vacuum fiashover characteristics of pure epoxy under different steepnesses is investigated by using a pulse generator with parameters of a rise time of 40 ns and a full width at half maximum of 2.5 μs. Pulses with six levels of steepness were achieved by changing the charging voltage of the generator. Based on the linear equation and electron emission equation, the relationship between the flashover voltage and pulse steepness was fitted. By virtue of the fitted formula, it was possible to predict the flashover voltage under near DC or higher steepness conditions. Based on the electron emission equation, the relationship between the time delay and flashover field was also fitted. Result shows that F-N electron emission dominates the flashover process.展开更多
In this paper experimental wind wave data are analyzed. It is found that differences in spectral width will give rise to differences in wave height distribution. The effect of spectral width on the distribution is mai...In this paper experimental wind wave data are analyzed. It is found that differences in spectral width will give rise to differences in wave height distribution. The effect of spectral width on the distribution is mainly in the high wave range. The effect of wave steepness is in low, medium and high wave ranges. In the high wave range the effect of spectral width is comparable to that of wave steepness. Differences in spectral width in the observations may give rise to discrepancies in the result when wave steepness is the only parameter in the distribution.展开更多
Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a diffic...Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a difficult task that depends heavily on theoretical research on wavelength distribution and direct observations. Development of remote-sensing techniques provides new opportunities to study wave steepness. At present, two formulas are proposed to estimate wave steepness from QuikSCAT and ERS-1/2 scatterometer data. We found that wave steepness retrieving is not affected by radar band, and polarization method, and that relationship of wave steepness with radar backscattering cross section is similar to that with wind. Therefore, we adopted and modified a genetic algorithm for relating wave steepness with radar backscattering cross section. Results show that the root-mean-square error of the wave steepness retrieved is 0.005 in two cases from ERS-1/2 scatterometer data and from QuikSCAT scatterometer data.展开更多
Wave steepness is an important characteristic describing the severity of sea state in ocean engineering. In the existing theoretical and experimental studies,wave steepness is often substituted by some related quantit...Wave steepness is an important characteristic describing the severity of sea state in ocean engineering. In the existing theoretical and experimental studies,wave steepness is often substituted by some related quantities. In this paper,a new probability density function(pdf) of steepness,which is a pdf of the steepness in its original definition,is obtained for narrowband Gaussian processes. The drawback inherent in the previous theoretical pdfs of steepness,that is,the probability density at zero steepness is nonzero,has been eliminated. Laboratory experiments were conducted in a wind-wave flume to measure the wave steepness distribution. Comparisons among laboratory measurements and some theoretical pdfs of steepness show that the new pdf generally fits the data better than the one proposed by Zheng et al.(1999) .展开更多
Wind-wave steepness along the North Atlantic(27.46 N<lat<43.53 N and 62.03 W<lon<80.19 W)is characterized based on at most 37 years(1984 to 2020)of buoy measurements.Wave data from 16 National Data Buoy Ce...Wind-wave steepness along the North Atlantic(27.46 N<lat<43.53 N and 62.03 W<lon<80.19 W)is characterized based on at most 37 years(1984 to 2020)of buoy measurements.Wave data from 16 National Data Buoy Center(NDBC)and 2 Marine Environmental Data Section(MEDS)stations located at depths ranging from 33 m to 5394 m are used.Intra-annual variability of the full spectrum wave steepness(s_(m))and the wind-sea steepness(s_(mw))are analyzed.Among the 18 locations,the average sm and smw ranged between 0.023 to 0.037 and 0.025 to 0.039,respectively.Results show similar intra-annual variability among the different buoys both for sm and for smw with monthly average maximums occurring between January and February(0.029<s_(m)<0.045,0.030<s_(mw)<0.048)and minimums between July and August(0.018<s_(m)<0.033,0.019<s_(mw)<0.035).The probability distribution function of sm/smw presents a peak between 0.9 and 1.0 for all stations.It is also found that the sea states with the maximum sm and smw are not directly linked to the maximum events of significant wave height.Practically,these findings can inform the implementation of various ocean engineering endeavors as well as navigation risk determination,as wave steepness exerts a significant influence on several physical processes in the marine environment.展开更多
Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistan...Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.展开更多
Understanding the active tectonic processes in the Nandakini Watershed is imperative for evaluating geological hazards and seismic risks,as well as for informing land-use planning and natural resource management strat...Understanding the active tectonic processes in the Nandakini Watershed is imperative for evaluating geological hazards and seismic risks,as well as for informing land-use planning and natural resource management strategies in the region.Tectonic geomorphology serves as a vital tool for characterizing recent tectonic movements.This research employs GIS techniques to elucidate tectonic activity and its influence on drainage patterns in the Nandakini Watershed,utilizing morphometric parameters derived from SRTM DEM data.Morphometric indices are employed to assess the tectonic movement within drainage basins,capturing both areal and linear factors such as drainage density,texture,circulatory and bifurcation ratios,and stream length ratios.The linear and areal morphometric indices are categorized into three classes representing varying degrees of active tectonic activity.These classifications are then utilized to compute the relative active tectonic index(IRAT).In addition,geomorphic parameters include hypsometric integral,stream length-gradient index,normalized steepness index,chi gradient index,and swath profiles.The majority of the studied region is in an extremely high to moderately active tectonic zone.Large-scale faults and thrusts within the basins are closely correlated with these zones that have been identified.The integrated methodology of GIS-based morphometric analysis and geomorphic study enables the identification of deformed landforms associated with ongoing tectonic activity.Furthermore,these results offer valuable insights for informing watershed management strategies and promoting sustainable land use planning initiatives.展开更多
The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were ca...The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions.展开更多
In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)...In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)ϕ=u^(2),in R^(3),where s∈(3/4,1),t∈(0,1),q∈(1,2),p∈(4,2_(s)^(*)),2_(s)^(*):=6/3-2s is the fractional critical exponent in dimension 3,V_(λ)(x)=λV(x)+1 withλ>0.Under the case of steep potential well,we obtain the existence of the sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma.Furthermore,we prove that the energy of ground state sign-changing solution is strictly more than twice of the energy of the ground state solution.Our results improve the recent results in the literature.展开更多
0 INTRODUCTION Geohazards in mountainous regions pose significant risks to the construction and safe operation of transportation,water conservancy,and other critical infrastructure projects.Engineering geological inve...0 INTRODUCTION Geohazards in mountainous regions pose significant risks to the construction and safe operation of transportation,water conservancy,and other critical infrastructure projects.Engineering geological investigations are crucial for disaster prevention and mitigation.展开更多
Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge pr...Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.展开更多
Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily sim...Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or multi-layer strata when labeled data are missing.This work aims to develop a universal network structure to encode the mass continuity equation and Darcy’s law without labeled data.The finite element approximation,which can decompose a complex heterogeneous domain into simpler ones,is adopted to build the differentiable network.Without conventional DNNs,physics-encoded finite element network(PEFEN)can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training.Benefiting from its discretized formulation,the discontinuous heterogeneous hydraulic conductivity is readily embedded into the network.Three typical cases are reproduced to corroborate PEFEN’s superior performance over conventional PINNs and the PINN with mixed formulation.PEFEN is sparse and demonstrated to be capable of dealing with heterogeneity with much fewer training iterations(less than 1/30)than the improved PINN with mixed formulation.Thus,PEFEN saves energy and contributes to low-carbon AI for science.The last two cases focus on common geotechnical settings of impermeable sheet pile in singlelayer and multi-layer strata.PEFEN solves these cases with high accuracy,circumventing costly labeled data,extra computational burden,and additional treatment.Thus,this study warrants the further development and application of PEFEN as a novel differentiable network in porous flow of practical geotechnical engineering.展开更多
Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basi...Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomor- phological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally ex- tended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.展开更多
Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorph...Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.展开更多
Six parameterization schemes of roughness or drag coefficient are evaluated on the basis of the data from six experiments. They present great consistency with measurement when friction velocity u*〈0.5 m/s (ap- prox...Six parameterization schemes of roughness or drag coefficient are evaluated on the basis of the data from six experiments. They present great consistency with measurement when friction velocity u*〈0.5 m/s (ap- proximately corresponding to 10 m wind speed U10〈 12 m/s) and large deviation from measurement when u*≥0.5 m/s (approximately U10 ≥ 12 m/s). In order to improve the deviation, a new parameterization of drag coefficient is derived on the basis of the similarity theory, Charnock relationship and Toba 3/2 power law. Wave steepness and wind-sea Reynolds number are considered in the new parameterization. Then it is test- ed on the basis of the measurements and shows significant improvement when u*≥0.5 m/s. Its standard errors are much smaller than the ones of the other six parameterizations. However, the new parameteriza- tion still needs more tests especially for high winds.展开更多
Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep...Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.展开更多
基金Supported by the NSFC (No. 40176010) and the national "863" Projectof China (No. 2001AA633070).
文摘It is traditionally assumed that the relationship between wave steepness and wave age is inde- pendent of the wind wave growth state. In fact, the traditional relationship can not describe the whole course of wind wave growth. This paper assumes that the relationship between wave steepness and wave age changes with the variety of dimensionless fetch. Based on the relationship proposed by Hou and Wen (1990), a new relation- ship in the course of wind wave growth is revealed. Comparisons between the present study and other previous relationships show that this new relationship explains better the observations than the other existing relationships. In the case of small fetch, wave age value increases more quickly than other models while it is in opposition to that in the case of large fetch. The result in present paper can clearly reflect the whole course of wind wave growth, it is an improvement for traditional results.Key words: wave steepness, wave age, relationship between wave steepness and wave age
基金Supported by Specialized Research Fund for Doctoral Program of Higher Education (No.20040423002)by National Natural Science Foundation of China (No.40476008)
文摘Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the “3/2-power law” (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves. Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.
基金National Natural Foundation of China.(No.49676277)
文摘A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.
基金supported by National Natural Science Foundation of China(No.50437030)
文摘Research on the pulsed flashover characteristics of vacuum insulation material is significant for the design and manufacture of pulse power devices. In view of the voltage increase rate of the fast pulse (pulse steepness), the vacuum fiashover characteristics of pure epoxy under different steepnesses is investigated by using a pulse generator with parameters of a rise time of 40 ns and a full width at half maximum of 2.5 μs. Pulses with six levels of steepness were achieved by changing the charging voltage of the generator. Based on the linear equation and electron emission equation, the relationship between the flashover voltage and pulse steepness was fitted. By virtue of the fitted formula, it was possible to predict the flashover voltage under near DC or higher steepness conditions. Based on the electron emission equation, the relationship between the time delay and flashover field was also fitted. Result shows that F-N electron emission dominates the flashover process.
文摘In this paper experimental wind wave data are analyzed. It is found that differences in spectral width will give rise to differences in wave height distribution. The effect of spectral width on the distribution is mainly in the high wave range. The effect of wave steepness is in low, medium and high wave ranges. In the high wave range the effect of spectral width is comparable to that of wave steepness. Differences in spectral width in the observations may give rise to discrepancies in the result when wave steepness is the only parameter in the distribution.
基金Supported by the National High Technology Research and Development Program of China(863Program)(No.2008AA09Z102)Data were provided by the European Space Agency
文摘Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a difficult task that depends heavily on theoretical research on wavelength distribution and direct observations. Development of remote-sensing techniques provides new opportunities to study wave steepness. At present, two formulas are proposed to estimate wave steepness from QuikSCAT and ERS-1/2 scatterometer data. We found that wave steepness retrieving is not affected by radar band, and polarization method, and that relationship of wave steepness with radar backscattering cross section is similar to that with wind. Therefore, we adopted and modified a genetic algorithm for relating wave steepness with radar backscattering cross section. Results show that the root-mean-square error of the wave steepness retrieved is 0.005 in two cases from ERS-1/2 scatterometer data and from QuikSCAT scatterometer data.
文摘Wave steepness is an important characteristic describing the severity of sea state in ocean engineering. In the existing theoretical and experimental studies,wave steepness is often substituted by some related quantities. In this paper,a new probability density function(pdf) of steepness,which is a pdf of the steepness in its original definition,is obtained for narrowband Gaussian processes. The drawback inherent in the previous theoretical pdfs of steepness,that is,the probability density at zero steepness is nonzero,has been eliminated. Laboratory experiments were conducted in a wind-wave flume to measure the wave steepness distribution. Comparisons among laboratory measurements and some theoretical pdfs of steepness show that the new pdf generally fits the data better than the one proposed by Zheng et al.(1999) .
基金FCT/MCTES for the financial support to CESAM(UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020),through national funds.
文摘Wind-wave steepness along the North Atlantic(27.46 N<lat<43.53 N and 62.03 W<lon<80.19 W)is characterized based on at most 37 years(1984 to 2020)of buoy measurements.Wave data from 16 National Data Buoy Center(NDBC)and 2 Marine Environmental Data Section(MEDS)stations located at depths ranging from 33 m to 5394 m are used.Intra-annual variability of the full spectrum wave steepness(s_(m))and the wind-sea steepness(s_(mw))are analyzed.Among the 18 locations,the average sm and smw ranged between 0.023 to 0.037 and 0.025 to 0.039,respectively.Results show similar intra-annual variability among the different buoys both for sm and for smw with monthly average maximums occurring between January and February(0.029<s_(m)<0.045,0.030<s_(mw)<0.048)and minimums between July and August(0.018<s_(m)<0.033,0.019<s_(mw)<0.035).The probability distribution function of sm/smw presents a peak between 0.9 and 1.0 for all stations.It is also found that the sea states with the maximum sm and smw are not directly linked to the maximum events of significant wave height.Practically,these findings can inform the implementation of various ocean engineering endeavors as well as navigation risk determination,as wave steepness exerts a significant influence on several physical processes in the marine environment.
基金supported by the sub-project“Research and Application of In-Situ Value-Added Water-Soluble Fertilizer Application Technology”(Grant No.2023YFD1700204-3)under the 14th Five-Year National Key R&D Program Project“Development and Industrialization of Novel Green Value-Added Fertilizers”.
文摘Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity.
文摘Understanding the active tectonic processes in the Nandakini Watershed is imperative for evaluating geological hazards and seismic risks,as well as for informing land-use planning and natural resource management strategies in the region.Tectonic geomorphology serves as a vital tool for characterizing recent tectonic movements.This research employs GIS techniques to elucidate tectonic activity and its influence on drainage patterns in the Nandakini Watershed,utilizing morphometric parameters derived from SRTM DEM data.Morphometric indices are employed to assess the tectonic movement within drainage basins,capturing both areal and linear factors such as drainage density,texture,circulatory and bifurcation ratios,and stream length ratios.The linear and areal morphometric indices are categorized into three classes representing varying degrees of active tectonic activity.These classifications are then utilized to compute the relative active tectonic index(IRAT).In addition,geomorphic parameters include hypsometric integral,stream length-gradient index,normalized steepness index,chi gradient index,and swath profiles.The majority of the studied region is in an extremely high to moderately active tectonic zone.Large-scale faults and thrusts within the basins are closely correlated with these zones that have been identified.The integrated methodology of GIS-based morphometric analysis and geomorphic study enables the identification of deformed landforms associated with ongoing tectonic activity.Furthermore,these results offer valuable insights for informing watershed management strategies and promoting sustainable land use planning initiatives.
基金supported by the National Natural Science Foundation of China (Grant No.52109125)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20231217)the Key Laboratory of Geomechanics and Geotechnical Engineering Safety,Chinese Academy of Sciences (Grant No.SKLGME023001).
文摘The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions.
基金supported by the Natural Science Foundation of Sichuan(No.2023NSFSC0073)。
文摘In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)ϕ=u^(2),in R^(3),where s∈(3/4,1),t∈(0,1),q∈(1,2),p∈(4,2_(s)^(*)),2_(s)^(*):=6/3-2s is the fractional critical exponent in dimension 3,V_(λ)(x)=λV(x)+1 withλ>0.Under the case of steep potential well,we obtain the existence of the sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma.Furthermore,we prove that the energy of ground state sign-changing solution is strictly more than twice of the energy of the ground state solution.Our results improve the recent results in the literature.
基金financially supported by the National Key R&D Program of China(No.2022YFC3080200)。
文摘0 INTRODUCTION Geohazards in mountainous regions pose significant risks to the construction and safe operation of transportation,water conservancy,and other critical infrastructure projects.Engineering geological investigations are crucial for disaster prevention and mitigation.
文摘Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272338 and 41827807)Department of Transportation of Zhejiang Province,China(Grant No.202213).
文摘Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or multi-layer strata when labeled data are missing.This work aims to develop a universal network structure to encode the mass continuity equation and Darcy’s law without labeled data.The finite element approximation,which can decompose a complex heterogeneous domain into simpler ones,is adopted to build the differentiable network.Without conventional DNNs,physics-encoded finite element network(PEFEN)can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training.Benefiting from its discretized formulation,the discontinuous heterogeneous hydraulic conductivity is readily embedded into the network.Three typical cases are reproduced to corroborate PEFEN’s superior performance over conventional PINNs and the PINN with mixed formulation.PEFEN is sparse and demonstrated to be capable of dealing with heterogeneity with much fewer training iterations(less than 1/30)than the improved PINN with mixed formulation.Thus,PEFEN saves energy and contributes to low-carbon AI for science.The last two cases focus on common geotechnical settings of impermeable sheet pile in singlelayer and multi-layer strata.PEFEN solves these cases with high accuracy,circumventing costly labeled data,extra computational burden,and additional treatment.Thus,this study warrants the further development and application of PEFEN as a novel differentiable network in porous flow of practical geotechnical engineering.
基金funded jointly by the National Natural Science Foundation of China (Nos. 41402187, 41372220, 41590861, 41661134011)
文摘Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomor- phological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally ex- tended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.
基金financially supported by the National Key Research and Development Program of China (2016YFA0601601)the National Science and Technology Support Program (2013BAB06B03)+2 种基金the National Natural Science Foundation of China (41472155)Candidates of the Young and MiddleAged Academic Leaders of Yunnan Province (2014HB005)Program for Excellent Young Talents of Yunnan University
文摘Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.
基金The National Basic Research Program of China under contract Nos 2011CB403501 and 2012CB417402the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No.41121064
文摘Six parameterization schemes of roughness or drag coefficient are evaluated on the basis of the data from six experiments. They present great consistency with measurement when friction velocity u*〈0.5 m/s (ap- proximately corresponding to 10 m wind speed U10〈 12 m/s) and large deviation from measurement when u*≥0.5 m/s (approximately U10 ≥ 12 m/s). In order to improve the deviation, a new parameterization of drag coefficient is derived on the basis of the similarity theory, Charnock relationship and Toba 3/2 power law. Wave steepness and wind-sea Reynolds number are considered in the new parameterization. Then it is test- ed on the basis of the measurements and shows significant improvement when u*≥0.5 m/s. Its standard errors are much smaller than the ones of the other six parameterizations. However, the new parameteriza- tion still needs more tests especially for high winds.
基金The National Natural Science Foundation of China under contract No.50779015the National Key Technology R&D Program of China under contract No.2012BAB03B01
文摘Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.