蒸汽管网流量负荷的精准预测与不确定性量化分析是优化能源调度和保障系统安全运行的关键。针对传统预测模型存在的预测精度不足和不确定性量化不全面等问题,提出了一种基于贝叶斯神经网络与补偿预测的融合模型。通过季节性-趋势分解(S...蒸汽管网流量负荷的精准预测与不确定性量化分析是优化能源调度和保障系统安全运行的关键。针对传统预测模型存在的预测精度不足和不确定性量化不全面等问题,提出了一种基于贝叶斯神经网络与补偿预测的融合模型。通过季节性-趋势分解(STL)将原始负荷数据解耦为周期项、趋势项和噪声项,分别采用贝叶斯神经网络与门控循环单元神经网络(Gated Recurrent Unit Neural Netwer,GRU)补偿预测模型进行多分量建模,并结合贝叶斯信息融合与不确定度合成方法,同步实现预测结果的认知不确定性和任意不确定性的动态量化。实测实验表明:相较于传统BP神经网络模型和LSTM模型,STL-BNN模型预测精度显著提升,均方误差和平均绝对误差分别降低2.29%和1.58%;在不确定性量化方面,通过认知-任意不确定性的分层解析与合成,STL-BNN模型预测值的不确定度估计值的平均绝对误差控制在实际计算数据的7.08%左右,补充并完善了预测结果在线不确定性实时分析和量化功能。展开更多
文摘蒸汽管网流量负荷的精准预测与不确定性量化分析是优化能源调度和保障系统安全运行的关键。针对传统预测模型存在的预测精度不足和不确定性量化不全面等问题,提出了一种基于贝叶斯神经网络与补偿预测的融合模型。通过季节性-趋势分解(STL)将原始负荷数据解耦为周期项、趋势项和噪声项,分别采用贝叶斯神经网络与门控循环单元神经网络(Gated Recurrent Unit Neural Netwer,GRU)补偿预测模型进行多分量建模,并结合贝叶斯信息融合与不确定度合成方法,同步实现预测结果的认知不确定性和任意不确定性的动态量化。实测实验表明:相较于传统BP神经网络模型和LSTM模型,STL-BNN模型预测精度显著提升,均方误差和平均绝对误差分别降低2.29%和1.58%;在不确定性量化方面,通过认知-任意不确定性的分层解析与合成,STL-BNN模型预测值的不确定度估计值的平均绝对误差控制在实际计算数据的7.08%左右,补充并完善了预测结果在线不确定性实时分析和量化功能。